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Abstract A growing body of empirical evidence suggests that the adaptive

capabilities of computer-based learning environments can be improved through the

use of educational data mining techniques. Log-file trace data provides a wealth of

information about learner behaviors that can be captured, monitored, and mined for

the purposes of discovering new knowledge and detecting patterns of interest. This

study aims to leverage these analytical techniques to mine learner behaviors in

relation to both diagnostic reasoning processes and outcomes in BioWorld, a

computer-based learning environment that support learners to practice solving

medical problems and receive formative feedback. In doing so, hidden Markov

models are used to model behavioral indicators of proficiency during problem

solving, while an ensemble of text classification algorithms are applied to written

case summaries that learners’ write as an outcome of solving a case in BioWorld.

The application of these algorithms characterize learner behaviors at different

phases of problem solving which provides corroborating evidence in support of

where revisions can be made to provide design guidelines of the system. We con-

clude by discussing the instructional design and pedagogical implications for the
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novice–expert overlay system in BioWorld, and how the findings inform the

delivery of feedback to learners by highlighting similarities and differences between

the novice and expert trajectory toward solving problems.

Keywords Intelligent tutoring systems � Medical education � Educational data
mining � Learning analytics � Hidden Markov models � Overlay models

Introduction

The utility of computer-supported education for learning cannot be understated;

such learning experiences enrich the learner in varied ways. Progress in instructional

technology research and development has brought various affordances and

achievements in computer-based learning environments (CBLEs). CBLEs present

important learning opportunities (VanLehn 2011), highlighted by the body of work

replete with examples of CBLEs that have been developed, deployed, and assessed

in an effort to aid learners in their scholastic activities. CBLEs have been used for a

wide variety of purposes and in a gamut of contexts, including science (e.g., Lajoie

2009), math (e.g., Matsuda et al. 2013), computer science (e.g., Mitrovic 2003), and

history (e.g., Poitras et al. 2012). The literature is rife with studies documenting the

positive outcomes of the use of CBLEs (e.g., Beal et al. 2007; Biswas et al. 2010;

Dodds and Fletcher 2004; Graesser et al. 2005; Matsuda et al. 2013; VanLehn et al.

2005). Research has suggested that there are beneficial effects of incorporating

adaptation in such learning systems (Anderson and Gluck 2001; Durlach and Ray

2011).

Computer-based learning environments like intelligent tutoring systems (ITSs)

are designed to provide adaptive instruction through the careful tracking of learner

performance that determines the level of assistance needed at specific points in time.

Some examples of adaptive systems include: Autotutor (Graesser et al. 2004),

Andes Physics Tutor (VanLehn et al. 2005), and Cognitive Tutor in Algebra

(Koedinger and Corbett 2006). ITSs provide learners with a one-on-one tutoring

experience, which as Bloom (1984) found, can result in learning outcomes two

standard deviations above regular classroom instruction. Over the years, research on

the design, implementation, and evaluation of such learning systems has been

accruing, yet challenges remain. One perennial challenge for learning technology

researchers is how to adapt learning systems and improve response mechanisms.

Modeling learner behaviors in such systems is crucial to better comprehend the

learning trajectory which is needed to improve the learning system. Durlach and

Ray (2011) note that generally the input (data) used to determine the level of

adaptation is based on the ‘‘student ability to answer questions or solve problems’’

(p. 21). Thus, to enhance the adaptation and response mechanisms in learning

systems, and ultimately learning, user–system interaction data need to be considered

in light of its importance to improving instructional systems.

The unbridled growth in digital details that are created by people and systems is a

widely told story. Similarly, a wealth of educational data is being amassed by

researchers designing computer-based learning environments. An important aspect
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of learning in an ITS is the monitoring of learners’ progress by capturing the traces

they leave as they interact with the learning system. Technological advances have

afforded the ability to capture students’ learning on a more granular level than ever

before. One of the most common means of capturing learner–system interactions in

computer-based learning environments is via log files (Romero and Ventura 2010).

The use of log files can be especially helpful in ascertaining learning without being

intrusive, and also providing a flexible means of capturing data at different levels of

granularity. Leveraging the learning data could be used to create more effective

educational experiences. Recent advances in educational data mining and learning

analytics have opened up new avenues for conducting educational research.

Specifically, these techniques have created new opportunities to investigate

learners’ learning trajectories, and thus, increases the ability to facilitate learning.

Concomitantly, there has been an explosion of interest in mining the vast and rich

repository of data in CBLEs as is shown by the use of educational data mining

(EDM), a fast-growing field based on the optimal use of educational data, to

facilitate and augment educational research. Data mining has been applied with

much success on educational data (Baker and Yacef 2009; Romero and Ventura

2010). EDM research has focused on mining and modeling educational data toward

comprehending various dimensions of learning such as off-task behavior (Baker

2007), learner emotions (Craig et al. 2008), gaming the system (Baker et al. 2013),

detecting programing strategies (Blikstein 2011), and learner engagement (Cocea

and Weibelzahl 2009). Durlach and Ray (2011) highlight that ‘‘one way to tune

parameters of adaptation is through analysis of past student performance data using

data mining techniques’’ (p. 24). Thus, EDM techniques and tools can be useful

analysis tools that can lead to improvements in the types of student modeling

afforded by ITSs.

Enhancing learner experience is a constant goal for instructional technology

researchers, and the ways to achieve this goal are plentiful. One of the predominant

features of intelligent tutoring systems is the provision of feedback to learners.

Studies have suggested the benefits of feedback toward better learning outcomes

(Hattie and Timperley 2007; van der Kleij et al. 2012) and further, guided feedback

through appropriate and timely feedback is also posited to be important for learning

(Anderson et al. 1995; Merrill 2002). Similarly, individualized feedback is

considered an important component of ITSs (Park and lee 2004). Employing

various data mining techniques on usage data can be used to improve the learning

system, specifically toward the design of feedback mechanisms. In this paper, we

present and discuss our efforts to leverage data mining techniques in the context of

BioWorld.

BioWorld (Lajoie 2009; Lajoie et al. 2015) is an ITS developed to scaffold

novice physicians in developing clinical reasoning skills as they diagnose virtual

patient cases. Appropriate scaffolding and adaptation is based on an accurate learner

model, which is an essential step toward identifying learner behavior, ascertaining

the use of the learning material, and improving the learning system. Analysis of the

sequence of actions employed by learners in problem solving can provide insights

into the use of the learning material, and facilitate a deeper understanding of the

learning process. For the proposed study, we employ a data mining approach, which
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automatically builds a learner model via the behavior patterns observed that

illustrate specific learning trajectories. Hidden Markov models (HMMs) provide a

simple and effective way for modeling sequence data (Rabiner 1989; Rabiner and

Juang 1986), and have received a growing recognition for its applicability in varied

problems. In the present study, we employ HMMs on the sequence data extracted

from the log files generated by BioWorld, to explore insights that can be harvested

by such a modeling technique.

Scaffolding is provided in the form of expert feedback about the clinical

reasoning processes taken to solve a specific case. BioWorld dynamically assesses

novices’ reasoning trajectory against expert paths. The novice–expert overlay model

is used to provide requisite feedback to learners (Naismith and Lajoie 2010; Doleck

et al. 2014a). An important facet of clinical reasoning is the ability to write case

summaries. However, the current overlay model does not include these summaries.

Motivated by the desire to improve the Novice–Expert overlay model in BioWorld,

we explore the feasibility and efficacy of text mining in ascertaining the differences

between case summaries written by experts and novices in BioWorld.

The primary goals and contributions of this paper are to illustrate the possibilities

and efficacy of two popular mining techniques, namely, HMMs and text mining on

learner–system usage data from an ITS called BioWorld. This paper is organized as

follows: (1) the first section presents a brief overview of the learning environment

used in the study, namely, BioWorld; (3) the second section describes the

methodology; (4) the third section presents the procedure, analysis, and results of

HMM analysis across the three clinical cases; (5) the fourth section outlines the

experimental setup and findings of using text mining for the novice–expert

classification task; and (6) the final section discusses the findings, highlights

limitations, and offers future directions of the present study.

Learning environment: BioWorld

BioWorld (Fig. 1) is an ITS that simulates clinical reasoning and is designed to

support medical students in practicing diagnostic reasoning skills with virtual

patients while receiving feedback (Lajoie 2009; Lajoie et al. 2015). The system was

created using a cognitive apprenticeship framework (Collins 2006) where learners

practice realistic tasks and are scaffolded in the context of their learning with expert

models. BioWorld was designed to stimulate individual metacognitive awareness by

providing tools to support students in both monitoring and controlling their learning

(Lajoie et al. 2013). Students use these tools dynamically to document their

hypotheses, their confidence level in these hypotheses, and evidence that supports

their hypotheses. Bioworld consists of four main learning spaces (The Patient

Problem, Chart, Library, and Consult). Using these tools, novice physicians can

diagnose virtual patient cases by identifying relevant symptoms, ordering lab tests,

and reasoning about the nature of the underlying disease (Lajoie 2009). Each

clinical case begins with the patient problem where learners review the patient

history and gather evidence by highlighting relevant symptoms and other relevant

information (which is sent to the evidence palette). Based on the collected evidence,

students propose preliminary hypotheses (with the help of the Hypothesis Manager
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Tool) and report their corresponding confidence (as a percentage) in each hypothesis

(via the Belief meter). In order to confirm or disconfirm a particular hypothesis,

students can order a range of laboratory tests (the results of which are saved in the

evidence palette). Help-seeking facilities are available via the Library (glossary of

medical terminology and diagnostic testing procedures, as well as, the typical

symptoms and transmission routes of a specific disease) and Consult tools (context-

specific hints delivered in increasing order of specificity). This string of activities

helps students arrive at a diagnosis. Upon submitting their final diagnosis, students

are tasked with justifying their selection by sorting and prioritizing all the evidence

used to arrive at the final diagnosis. Students receive individualized feedback on

their solution based on an aggregated expert solution via the systems’ dynamic

assessment. The learning cycle ends with the student writing a final case summary

of the patient’s case; this summary is meant to capture the steps taken to solve the

case, and how each step contributed toward the end diagnosis. An example of a line

of diagnostic reasoning where Pheochromocytoma is the main hypothesis for what

is wrong with Cynthia is illustrated in Fig. 2. The case description is as follows:

Cynthia is a 37-year-old banker. For the past few months she has been feeling

unwell. She dates this back to when she started taking her medication for high

blood pressure. She has had frequent headaches and periods of time during

which she feels extremely anxious with palpitations, profuse sweating, and

Fig. 1 A screenshot of the BioWorld interface
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flushing. The episodes are not triggered by any specific cause but she finds

they have become more frequent in the past little while. When asked by her

doctor, Cynthia admits that she has lost 10 pounds in the last 4 months and

that she has been dizzy from time to time.

Methods

Participant profile

Participation in the study was solicited through advertisements and newsletter at a

North American research university. Thirty volunteer undergraduate students

Fig. 2 A line of diagnostic reasoning where Pheochromocytoma is the main hypothesis
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participated in the study, and were compensated $20 at the completion of a 2-h

study session. The convenience sample comprised 19 women (63 %) and 11 men

(37 %), with an average age of 23 (SD = 2.60). All 30 participants were registered

in the same classes, where 28 were medical students and 2 were dental students. The

data for this study were collected as part of a larger project that investigated the

antecedent factors that led to attention allocation toward feedback in the BioWorld

environment (Naismith 2013). All participants consented to the use of the data

collected for research purposes.

Experimental procedure

Participants completed both a demographic questionnaire and the achievement goal

questionnaire. This was followed by a training session, where participants

completed a training case, which allowed them to learn how to navigate and use

the BioWorld system. Participants were also provided instructions on how to think

aloud while solving cases in BioWorld. Following the training case, the actual

experimental study began, where participants solved each of the three cases in

BioWorld on an individual basis for 2 h. The three endocrinology cases were: Amy,

Cynthia, and Susan Taylor. The correct diagnosis for each was diabetes mellitus

(type 1), pheochromocytoma, and hyperthyroidism, respectively. The order of the

cases was counterbalanced to mitigate practice effects. Upon completion of each

case, participants completed a retrospective outcome achievement emotions

questionnaire. The learners’ processes and think alouds were recorded. As a

measure of case difficulties, we used the results of an earlier study as a baseline;

Gauthier et al. (2008) ascertained the difficulty levels of the various patient cases

based on accuracy alone; the anticipated success rates (represented as percent

accuracies) for the three cases, ordered from easiest to the most difficult, were Amy

(94 %), Susan Taylor (78 %), and Cynthia (33 %).

Measures

In computer-based learning environments, one of the most common means of

capturing learner–system interactions is via log files. As learners use BioWorld, the

system captures learner actions, unequivocally attached to a learner, in log files

(Fig. 3). Three types of performance metrics are captured: diagnostic efficacy (e.g.,

percentage of matches with experts), efficiency (e.g., number of tests ordered), and

affect (e.g., confidence). The usage data include the attempt identifier (participant

and case ID), a timestamp, the BioWorld space (e.g., chart), the specific action taken

(e.g., add test), and details in relation to the action (e.g., (TSH) Result: 0.2 mU/L).

An example of a line of diagnostic reasoning, as logged by the BioWorld system, is

illustrated in Fig. 2.

Examining learner behavior

Although the topic of clinical reasoning has previously been examined extensively,

the bulk of the studies focus on diagnosis correctness. However, understanding how
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learners arrived at the diagnosis can provide a more detailed examination of the

diagnostic reasoning processes that lead to patient case solutions than diagnosis

accuracy alone. The learning trajectory, i.e., actions taken by learners in solving a

problem, holds considerable information that can be useful for modeling and

improving learning systems. Biswas et al. (2010) recommend that shifting focus

from the frequency and relevance of learner activities to considering the internal

states and related learning strategies, can be useful in illuminating additional

information for examining learning in learning systems. Recent research in

computer-supported education has leveraged data mining techniques for examining

varied problems (Baker and Yacef 2009; Romero and Ventura 2010). One method

that has proven useful in investigating a range of problems is the HMMs (Rabiner

1989). HMMs have found widespread use in modeling sequential data in a range of

contexts, yet the application of HMMs to usage data from computer-based learning

environments is relatively new. Recent examples of application of HMMs in

educational contexts include studies by: (a) Beal et al. (2007) who used HMM to

ascertain the level of engagement in a tutoring system for high school mathematics

to predict the subsequent actions in the tutoring environment; and (b) Jeong et al.

(2008) who employed HMM in predicting transitions between learner activities in

a teachable agent environment and exhibited the efficacy of HMMs in ascertain-

ing learners’ pattern of activities. Leveraging HMM analysis may facilitate

considerable progression and improvements in learner modeling by providing an

alternate understanding of learner activities that will lead to better adaptive

environments.

As mentioned earlier, the actions that learners take to solve a problem, hold

considerable information. As learners use BioWorld, the system captures user

actions in log files. An example of actions taken in solving a real case, where

Pheochromocytoma is the main hypothesis, is illustrated in Fig. 2. The set of actions

Fig. 3 Snapshot of log file generated by BioWorld
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captured by the BioWorld system include: AE = ‘add evidence’; AH = ‘add

hypothesis’; CHC = ‘change hypothesis conviction’; LE = ‘link evidence’;

SEH = ‘select hypothesis’; AT = ‘add test’; SH = ‘submit hypothesis’; P = ‘pri-

oritize’; EM = ‘expert match’; FP = ‘final priority’; LL = ‘load library’; C = ‘cat-

egorize’; RP = ‘reprioritize’; SU = ‘submit summary’; UL = ‘unlink evidence’;

DH = ‘delete hypothesis’; SLC = ‘select library category’; ASH = ‘abort submit

hypothesis’; SL = ‘search library’; U = ‘unprioritize’; RC = ‘recategorize’.

Hidden Markov models

A hidden Markov model (HMM) is a double stochastic process with an underlying

stochastic process that is unseen, but can only be seen through another set of visible

stochastic processes that generate the observation sequence (Rabiner and Juang

1986). HMMs are formal foundations for making probabilistic models of linear

sequence ‘labeling’ problems (Rabiner 1989; Rabiner and Juang 1986). A formal

definition and additional details on HMMs can be found in Rabiner and Juang

(1986). The applicability of HMMs is offered by a growing body of literature and

has been applied to a range of applications including protein sequence modeling,

profile searches, speech recognition, multiple sequence alignment, and regulatory

site identification. A state diagram is used to visually represent the HMM model

(Fig. 4). The rectangles (labeled 1 and 2) represent the possible states of a process

and the arrows represent transitions between states. The label on each arrow

represents the probability of the transition. At each step of the process, the model

may generate an emission depending on which state it is in and then make a

transition to another state. An important characteristic of HMM is that the next state

depends only on the current state and not on the history of transition that leads to

the current state. Since we are only given the observed sequence, this underlying

state path is hidden—these are the residue labels that are needed to be inferred. The

state path is essentially a hidden Markov chain. In the following subsections, we

showcase the methodology employed for modeling problem solving in BioWorld

using HMM.

1 2

1-q

1-p

qp

Fig. 4 HMM example
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Experimental setup

One major affordance of intelligent tutoring systems is that learner interactions are

captured, and can be analyzed to provide adaptive instruction. Such fine-grained

user–system data can be beneficial in learner modeling and analytics. When solving

a case in BioWorld, learners’ actions and interactions with several tools, such as the

library and chart during problem solving are logged by the system. The learner

actions are time stamped and categorized according to both superordinate (e.g.,

Action: add lab test) and subordinate categories (e.g., Evidence: Thyroid

Stimulating Hormone (TSH) Result: 0.2 mU/L).

From the log files, a line of diagnostic reasoning (i.e., sequence data) can be

extracted. We extracted the sequence data for each of the endocrinology cases

(Amy, Cynthia, and Susan Taylor) from the BioWorld logs. To this end, a parser

(Doleck et al. 2014b) was used to extract the sequence data for the three cases from

the log files. The HMM that captures learners’ aggregated behavioral patterns was

then generated using this sequence data. In our work, we elected to use the HMM

generation tool (Biswas et al. 2010), which is used for modeling generative

sequences, to calculate and generate the HMMs. The tool generates visualizations

that illustrate the states, the action emission probabilities for each state, and the

transitions between states. In this paper, we present the visualizations illustrating the

state connections and the action emission probabilities for the three cases.

HMM results

We provide the results of applying HMM on the sequence data for three cases:

Amy, Cynthia, and Susan Taylor. The learned HMM structure, using the HMM tool,

for the three cases are given in Figs. 5, 6, and 7, respectively. The HMM structure is

defined by a set of states, the transition probabilities among these states, and the

emission probabilities for each state. The arrows in the generated HMM output

illustrates the transition probabilities between and within states, and the percentage

attached to each arrow indicates the transition probabilities. The analysis of the

generated HMM involves investigating the interactions between and within states;

these interactions elucidate how learners interact with the learning system. Once the

possible transitions are plotted, researchers have the task of dissecting and

interpreting the output. The qualitative aspect of model interpretation involves the

naming/labeling of the various states based on the emission probabilities. The

emission probabilities are the probability density functions that characterize each

state. The goal of this exercise is to demonstrate the viability and utility of HMM for

modeling learners’ behaviors; therefore, it is out of scope of this research to delve

into each behavioral pattern for the three cases. Thus, for the sake of simplicity of

analysis, the state transition with the highest probability is discussed for each of the

three cases.
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Fig. 5 Amy—HMM output

Fig. 6 Cynthia—HMM output
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Amy

The generated structure for theAmy case has ten hidden states. The transition fromS6 to

S10 (16 %) had the highest probability. To understand the transition fromS6 to S10, we

consider the emission probabilities in each state (Fig. 8). For S6, the majority emission

probabilities included: Add Hypothesis (0.73) and Change Hypothesis Conviction

(0.16). For S10, the majority emission probabilities included: Change Hypothesis

Conviction (0.61) and Submit Hypothesis (0.29). Thus, considering the descriptions of

the distinct states undergirded by the emission probabilities help interpret the states and

reveal the transition from S6 (diagnosis formulation) to S10 (Evaluation), which

represents learners’ transition from diagnosis formulation to evaluation.

Cynthia

The generated structure for the Cynthia case has nine hidden states. The transition

from S3 to S8 (14 %) had the highest probability. To understand the transition from

S3 to S8, we consider the emission probabilities in each state (Fig. 9). For S3, the

majority emission probabilities included: Add Hypothesis (0.22) and Link Evidence

(0.75). For S8, the majority emission probabilities included: Change Hypothesis

Conviction (0.60) and Submit Hypothesis (0.29). Thus, the transition from S3

(evidence-driven diagnosis formulation) to S8 (Evaluation) represents learners’

transition from evidence-driven diagnosis formulation to evaluation.

Fig. 7 Susan Taylor—HMM output
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Susan Taylor

The generated structure for the Susan Taylor case has ten hidden states. The

transition from S2 to S1 (14 %) had the highest probability. To understand the

transition from S2 to S1, we consider the emission probabilities in each state

(Fig. 10). For S2, the majority emission probabilities included: Add Hypothesis

(0.23), Change Hypothesis Conviction (0.08), and Link Evidence (0.67). For S1, the

majority emission probabilities included: Change Hypothesis Conviction (0.55) and

Submit Hypothesis (0.38). Thus, the transition from S2 (evidence-driven diagnosis

formulation) to S1 (evaluation) represents learners’ transition from evidence-driven

diagnosis formulation to evaluation.

Fig. 8 Amy—state emission probabilities

Fig. 9 Cynthia—state emission probabilities

Fig. 10 Susan Taylor—state emission probabilities
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Modeling relations between learners and their actions can be used to harvest

interesting and meaningful structural characteristics of the use of the learning

material. The HMM analysis helped trace and illuminate the different decision

learners made in solving a case in BioWorld. Several interesting observations can be

derived from the comparison of the HMM derived for the three cases. Specifically,

the examination of the HMM’s across different cases that vary in levels of difficulty

suggests important differences in the problem-solving trajectories. In particular, in

the easier case, the Amy case, learners engaged in a pattern of formulating a

hypothesis, and then evaluating their final diagnosis. On the other hand, in the more

complex cases, Cynthia and Susan Taylor, the evidence that is linked to a particular

hypothesis is also predictive of a shift from diagnosis formulation to evaluation.

This suggests a proclivity for linking evidence in the more difficult cases.

Comparison of the HMM derived for the three cases is highlighted in Table 1.

Discussion: modeling behaviors via HMM

Biswas et al. (2014) note that theory-driven metrics and context-driven hypotheses

have in the past been the vehicles for assessing learning behaviors in learning

systems; furthermore, they highlight the shift toward adoption of data mining

techniques for examining learner behaviors. Much work has been done to collect

and model user–system usage data, so that the information they contain can be most

effectively used. Various mining methods can be applied to educational data to

improve learning experiences and outcomes by increasing comprehension of learner

behaviors. A deep and appropriate examination of learner actions in learning

systems can lead to insights on behavioral patterns in learning and problem solving.

The HMM analysis on the clinical reasoning data from BioWorld represents an

effort toward revealing rich information about learner behaviors that can be valuable

from both an instructional design and technology perspective. The findings from the

HMM analysis indicate that behavioral patterns are indeed identifiable, where the

HMM model did capture a pattern in the lines of diagnostic reasoning in the context

of BioWorld. In particular, for the Amy case, learners engaged in a pattern of

formulating a hypothesis, and then evaluating their final diagnosis. For the Cynthia

and Susan Taylor cases, the evidence that is linked to a particular hypothesis is also

predictive of a shift from diagnosis formulation to evaluation. As highlighted

earlier, the three cases have varying difficulty levels; the Cynthia and Susan Taylor

cases are the more difficult cases. Linking evidence is more prominent in the two

Table 1 Comparison of the HMM derived for the three cases

Amy Cynthia Susan Taylor

State transition with

the highest

probability

S6–S10 S3–S8 S2–S1

Transition description Diagnosis

formulation to

evaluation

Evidence-driven diagnosis

formulation to

evaluation

Evidence-driven diagnosis

formulation to

evaluation
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aforementioned cases, suggesting the proclivity of evidence linking in the more

complex cases. The HMM results provide valuable insights into behavioral

differences across the three cases under consideration. This provides some evidence

of the case-specific (van der Vleuten and Swanson 1990; Fitzgerald et al. 1994;

Doleck et al. 2015) nature of clinical reasoning. The assessment of these reoccurring

behaviors stands to elucidate the important factors to task performance. Learner

modeling is an important research topic in computer-supported education; the

improvements and increased availability of mining methods have opened the area of

learner modeling to vast possibilities, enabling increased knowledge discovery from

educational data. Overall, HMMs can be used effectively in meeting the growing

interest in the analysis of educational usage data to detect behavior patterns in

learning environments. Future directions involve looking at other state transitions

for each of the cases to understand other differences in behavior patterns.

Similar to the popularity of HMMs, text mining has also been widely applied in

various disciplines as improving learning systems like ITSs continues to be of

interest to learning technologists. Mining data logged by such systems can play a

key role in system improvements. Text mining has been widely applied in extracting

knowledge from various forms of text data. In the following sections, we illustrate

our approach to improving the novice–expert overlay model in BioWorld by

employing text mining in ascertaining the differences between case summaries

written by experts and novices in BioWorld.

Improving the novice–expert overlay model

The ill-structured nature of problem solving involved in diagnosing diseases raises

several challenges in modeling learning. Studies have documented the existence of

multiple routes toward attaining the correct solution (Lajoie 2003, 2009; Gauthier

and Lajoie 2014). Because of the knotty nature of such problems, these learning or

problem-solving routes should be made explicit in order to represent common

misconceptions in progressing along the trajectory toward competency. An overlay

model ‘‘is a novice–expert difference model representing missing conceptions, often

implemented as either an expert model annotated for missing items or an expert

model with weights assigned to each element in the expert knowledge base’’ (Shute

and Zapata-Rivera 2008, p. 284). A novice–expert overlay model (Shute and

Zapata-Rivera 2012) has been applied in a variety of applications (e.g., Zapata-

Rivera and Greer 2000). Similarly, BioWorld employs a novice–expert overlay

system (Naismith and Lajoie 2010) to assess clinical reasoning during learning. The

system dynamically assesses student performance against expert solution paths; the

system compares similarities and differences in learners’ solution path against an

expert solution path, allowing learners to self-reflect on their problem-solving

approach (Lajoie and Poitra 2014). For instance, after novices submit their final

hypothesis, learners are able to compare their solution with an expert’s solution

(Fig. 11). Along with a comparison of the novice–expert on diagnosis and evidence,

the system also provides a detailed explanation of an expert’s reasoning. However,

the current version of this user model omits an important aspect of the novices’

clinical reasoning, i.e., the final written case summary. The written case summaries
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contain highlights apropos the symptoms, vital signs, and lab tests that were

germane to diagnosing the patient case. In order to address this gap (case summaries

divorced from the overlay model) and to augment the current novice–expert overlay

model, this paper represents the first steps in exploring the efficacy of text

categorization algorithms in differentiating between novice and expert case

summaries written in BioWorld to augment the current novice–expert overlay

model in BioWorld. The following subsections explicate the text-mining approach

that set the scope of this work.

Text classification for novice–expert overlay model

Text mining has become an important means of knowledge-based discovery from

varied data sources and types, and has assumed a central method with multifarious

potential applications in varied fields ranging from commerce to education. Text

classification is employed in a gamut of domains for varied purposes (Sebastiani

2002), such as news filtering and organization, document organization and retrieval,

opinion mining, email classification, and spam filtering (Aggarwal and Zhai 2012).

Text classification algorithms are also commonly used in intelligent tutoring

systems for assessment purposes (McNamara 2007). When investigating the

potential for augmenting the novice–expert overlay model in BioWorld, one natural

idea was to consider the use of various text-mining classifiers for this task. A survey

of the literature yields a gamut of classifiers for solving text classification problems;

Fig. 11 Novice–expert evidence comparison
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for our study we limited our experiments to a set of commonly used text-mining

algorithms (Aggarwal and Zhai 2012; Kibriya et al. 2004; Platt 1998). The goal of

text classification is the classification of text into a number of predefined categories;

this is achieved by first transforming the text (which are typically strings of

characters) into a representation suitable for the learning algorithm and the

classification task (Joachims 1998). Essentially, a general text classification problem

involves assigning a new unseen text to one of the given classes. For example, a

binary classification task for email messages would involve assigning a new

unlabeled email as either spam or non-spam. The general approach toward solving

such problems is to train classifiers utilizing labeled texts. Text-mining approaches

can be incorporated into learning systems like BioWorld in order to improve such

learning systems. We investigate the efficacy of text mining in the case summary

classification problem. Specifically, we test an ensemble of machine learning

algorithms for the novice–expert problem.

Data set: case summaries

In BioWorld, after learners receive individualized feedback on their solution based

on an aggregated expert solution, the learners’ final task in the diagnostic process

involves writing a final case summary of the patient’s case. The case summaries

written by novices and experts serve as the data for our experiments. The case

summaries were extracted from the log files generated by BioWorld. The final data

for the novice–expert classification problem included a total of 74 case summaries,

with 60 summaries written by novices and 14 summaries written by experts. In order

to evaluate our method, we used the 74 case summaries for our experiments.

A sample of a case summary written by a student is presented below:

Patient has elevated T3, T4; low TSH, and elevated thyroid stimulating

antiglobulin. This is very suggestive of hyperthyroidism due to an autoim-

mune process. Listed symptoms (anxiety, weight loss, elevated HR, BP,

tremor, sweating) all support this diagnosis.

A sample of a case summary written by an expert is presented below:

37-year-old female, presenting after starting high blood pressure pill with

episodes of palpitations, flushing, and sweating. On exam, hypertensive,

relative tachycardia. Labs revealed: normal TSH, T4, T3, glucose. Elevated

free urinary cathecolamines but normal total. CT abdo normal.

Initial exploration

For the text classification task, we explored the use of an efficient optimization

package and decided to utilize the popular Library for Support Vector Machines

(LibSVM) for model selection (Chang and Lin 2011). LibSVM provides a

parameter selection tool using cross-validation via a grid search. For a predictive

task like classification, both the model and parameter estimation method selection

are important for achieving high levels of performance. The task of learning
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involves choosing the model of optimal complexity and estimating the parameters

from the data (Chapelle and Vapnik 2000). The case summaries were extracted from

the log files generated by the BioWorld system. The performance (model selection)

of the method is evaluated through the contour graph shown in the model file

(Fig. 12). The accuracy rate achieved was 93.2432 % (C = 8; c = 0.00078124).

Receiver operating characteristic (ROC) curves are generated by considering the

rate at which true positives (vertical axis) accumulate versus the rate at which false

positives accumulate (horizontal axis). Figure 13 illustrates the ROC curve of the

LibSVM model. Generally, a data point in the upper left corner of the graph

represents optimal high performance. AUC represents a measure of accuracy (area

under the ROC curve). An area of 1 represents a perfect test, while an area of .5

represents a worthless test. The ROC curve generated for our model had an AUC of

0.9917.

Ensemble of text-mining algorithms

Our initial experiment with LibSVM demonstrated the feasibility of achieving

highly accurate prediction rate in the Novice–Expert case summary classification

task. In data mining, classification performance evaluation is an essential and key

way to ascertain the optimal learning algorithm from an ensemble of algorithms. We

wanted to extend this work by comparing an ensemble of algorithms. By

Fig. 12 LibSVM model file
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empirically comparing a number of classifiers, we can ascertain the classifier that

yields the best performance.

Experimental setup

The preprocessing filter StringToWordVector provided by WEKA (Hall et al. 2009)

was used to extract feature vector from the summary texts. The default values were

used except for the parameter that converted texts into lowercase. Stemmer is

commonly used to reduce the feature size in text classification problems where the

feature size tends to be in the order of tens of thousands. Because our dataset is

fairly small in terms of both the size of each summary, as well as the total number of

summaries written by expert and novices, the stemmer was not utilized. Stopwords

were not removed—they were kept as a part of feature vector. Using the

aforementioned preprocessing technique, word tokens were extracted as features.

The resulting arff file format was then utilized for the experiments.

Results with all the features

We employed a number of classifiers available in WEKA to learn to classify the

novice–expert dataset. The classifiers were applied on the generated dataset using

10-fold cross-validation. In k-fold cross-validation, generally, the dataset is

segmented into k segments. The classifier is then tested for each of these segments

and learned over other k - 1 segments. The initial results with all the features are

presented in Table 2.

Fig. 13 ROC curve: LibSVM accuracy
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Results with feature selection

Further experiments were conducted with feature selection to ascertain whether the

classifier results could be improved. Feature selection techniques are commonly applied

in datamining problems to extract themost discriminative features to reduce the feature

space as well as to improve classifier performance. The Correlation-based Feature

Subset Selection (CfsSubsetEval) technique provided by WEKA (we used the default

values for the parameters) was utilized; this technique evaluates the worth of a subset of

attributes by considering the individual predictive ability of each feature along with the

degree of redundancy between them (Hall 1999). TheGreedyStepwise (Hall et al. 2009)

forward search technique inWEKAwas employed through the space of attribute subsets

to search for themost discriminative feature set and rank them based on their individual

predictive ability. A new dataset was generated using these features, and a classifier was

applied to this dataset.Having applied the aforementioned feature selection technique to

our dataset, the classification results are presented in Table 3.

Results with cost-sensitive classifiers

The different classifiers showed considerable promise in the novice–expert

classification task. However, it should be noted that the data set under consideration

is unbalanced; unbalanced datasets tend to have a bias toward the majority class and

can lead to high accuracy rates even though the classifier may not be particularly

good. Frank and Bouckaert (2006) note that it is common to have text classification

problems that are unbalanced. Several approaches have been proposed to counter

the problem of unbalanced datasets. Cost-sensitive classifiers are common approach

used in scenarios when the text categorization problem is unbalanced. Thus to

mitigate the unbalanced class problem with our dataset, we utilized WEKA’s

CostSensitiveClassifiers (Hall et al. 2009). We then ran the same classifiers and the

results are presented in Table 4.

Table 2 Results with all the features

SMO Naı̈ve

bayes

Naı̈ve bayes

multinomial

J48 Random

forest

Accuracy (correctly

classified)

92.1053 % 86.8421 % 88.1579 % 78.9474 % 85.5263 %

Table 3 Results with feature selection

SMO Naı̈ve

bayes

Naı̈ve bayes

multinomial

J48 Random

forest

Accuracy (correctly

classified)

84.2105 % 82.8947 % 84.2105 % 80.2632 % 80.2632 %
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Discussion: improving novice–expert overlay model

The initial results obtained with LibSVM (the accuracy rate of the prediction was

93.2432 %) showed promise. We then tested an ensemble of classifiers. Using the

full features in the dataset, the various applied classifiers were able to achieve high

prediction rates. SMO performed the best among the classifiers (92.1053 %). We

then experimented with feature selection techniques to ascertain if the performance

of the various classifiers could be improved. Interestingly, the results with feature

selection did not result in improved performance, except for J48 (minor

improvement from 78.9474 to 80.2632 %). The results obtained using feature

selection were worse than results obtained using feature selection for the rest of the

classifiers. We noted that the dataset used in our experiments was unbalanced. Thus,

to mitigate that limitation, we decided to use cost-sensitive classifiers. Using the

CostSensitiveClassifiers, there was no deterioration in the performance. Overall, the

experimental results revealed the feasibility and efficacy of using text mining to

achieve highly accurate predictions for the Novice–Expert case summaries

classification task. In doing so, the linguistic features that differentiate case

summaries written by novices and experts may inform revisions to the novice–

expert overlay model, allowing the system to use the unstructured data obtained

from case summaries to better tailor the content shown in the feedback panel. As

such, the novice–expert overlay model may be further improved by examining the

descriptors that characterize these learner behaviors and how they differ across lines

of reasoning that are found to be correct as opposed to those that are incorrect. On

the basis of our theoretical framework, learners are expected to benefit from

instruction on how to adaptively monitor and control their own reasoning processes

to avoid common pitfalls in their interpretation of the evidentiary data collected

from the patient. The revisions made to the novice–expert overlay system allow the

system to individualize instruction to the specific needs of different learners.

Conclusion

The present work examined the feasibility and efficacy of employing HMMs and

text mining to usage data from a computer-based learning environment called

BioWorld. On the one hand, the formulation and revision of diagnoses on the basis

of evidence collected from the virtual patient are the most probable underlying

sequence of behaviors that characterize problem solving in BioWorld. We are

currently investigating this finding by exploring sequential patterns of behaviors

Table 4 Results with cost-sensitive classifiers

SMO Naı̈ve

bayes

Naı̈ve bayes

multinomial

J48 Random

forest

Accuracy (correctly

classified)

92.1053 % 86.8421 % 84.2105 % 78.9474 % 80.2632 %
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through the use of subgroup discovery method (Poitras et al. 2015). On the other

hand, we have shown that the linguistic features that characterize case summaries

written by learners are indicative of proficiency differences in synthesizing the

evidence and diagnostic processes after solving problems in BioWorld.

Two techniques were used to determine both process and product differences of

how medical students solve medical cases using BioWorld. In addition to diagnostic

accuracy, we were interested in the processes learners use to diagnose a patient case.

What steps do they take to reason about the disease? HMM was used to identify

state probabilities and transitions within and between 3 cases. HMM was used to

determine the types of learner patterns that existed for solving cases of varying

difficulty level. Another important advance in computational analyses is the use of

text-mining techniques to look at patterns in data, which we used to look at expert/

novice differences in how physicians wrote patient case summaries at the

completion of a case. These summaries are used in the real world as a hand-off

method to inform the next physician about the patient case.

The goal of the first part of our paper was to employ the use of HMMs for

examining the learner behaviors across three different virtual patient cases. The

findings demonstrate that the HMM model was effective at capturing patterns in the

lines of diagnostic reasoning that mediate performance in solving problems in the

context of BioWorld. More specifically, the results exhibited that learners’

behaviors could be modeled and analyzed effectively with HMMs. Similar to

previous examples of successful application of HMMs in solving various problems,

the results from our explorations of learner behaviors exhibited the utility of HMMs

in discover, detection, explication, and comparison of learner behaviors. However,

there are some limitations for this approach. Firstly, there is some subjectivity in

model explication; the derived states of the model are assigned labels/meaning by

the researchers using qualitative analysis. One way to mitigate this limitation is to

have domain experts involved in this stage of the analysis. Secondly, large data sets

are usually required to produce generalizable models; our data set is fairly small and

thus, the next logical step is to collect more observations and retest the model. Our

research demonstrates that using HMMs in this particular context can illustrate how

novices’ problem-solving actions differ from experts. This contribution is part of a

larger ongoing series of studies to better understand learners’ behaviors in

BioWorld; a forthcoming contribution proposes the use of process mining for

modeling learner behaviors (Doleck et al., in prep).

We have shown empirically that the ensemble of text-mining algorithms is

especially useful in generating high predictive accuracy for the classification task.

As such, the proposed case summary classifier allows the system to differentiate

between case summaries written by novices and experts, which suggests that these

case summaries are not only recognizably different by a machine, but also that their

constituent content is different in some important manner. The novice–expert case

summary classification task represents an important step in broadening the nature of

the information that is processed by the current version of the novice–expert overlay

model embedded in the BioWorld. This model is currently limited to the structured

data that is collected as learners interact with tools embedded in the interface;

however, the unstructured texts that constitute the case summaries may provide a
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wealth of information that is unaccountable by such tools, for instance, the patient

management plan or a justification for a differential diagnosis. One of the most

important limitations of the proposed revisions to the algorithms that underlie the

novice–expert overlay system is its scalability. It is yet to be determined whether the

model performs as well for novel examples of case summaries, or if the parameters

are applicable for case summaries written in relation to other cases that exhibit

variations in symptoms and vital signs indicative of the same disease. Although the

extensiveness of the training dataset is an important factor in addressing this

challenge, we maintain that the current method benefits the learner model embedded

in the system by targeting complementary channels of data about the learner. The

current version of the overlay model is severely limited in its inferential capabilities

by relying solely on evidence items, including highlighted symptoms and vital signs

as well as lab test procedures that warrant the main hypothesis for the case under

investigation. In order to build more scalable models, we suggest that establishing

common standards for logging case summary data across the field is necessary in

order to attain sufficiently large labeled datasets. We call for researchers to establish

such standards for intelligent tutoring systems in the medical domain to enable

further progress in this area.

The findings of this study suggest that sequential and linguistic features extracted

from the log-file database of intelligent tutoring systems are a meaningful source of

information to differentiate the mechanisms that underlies superior performance in

the medical domain. One promising line of research involves fine-grained

examinations of case summaries in order to better understand how novices write

case summaries differently than experts. A sentence- or proposition-level analysis

may lead the novice–expert model to make detailed recommendations regarding the

type of different feedback that most benefit a particular learner. Alternatively, the

features of the case that are most commonly reported by both novices and experts

alike should be considered as self-evident, and not worthy of extensive consider-

ation beyond the feedback that is currently delivered by the system, and which has

been shown to be effective in terms of promoting learning. In future studies, we will

focus our efforts on applying the text classifiers that were found to be successful in

the current study to a training dataset that has been labeled at a fine-grained level

with the aim of evaluating the impacts on classification accuracy.
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