
IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Issue: 06 | Jun-2014, Available @ http://www.ijret.org 11

LEARNING TO DETECT PHISHING URLs

Ram B. Basnet
1
, Andrew H. Sung

2
, Quingzhong Liu

3

1
Colorado Mesa University, 1100 North Ave. Grand Jct. CO 81501, USA

2
New Mexico Tech, 801 Leroy Pl. Socorro NM 87801, USA

3
Sam Houston State University, Huntsville, TX 77341, USA

Abstract
Phishing attacks have been on the rise and performing certain actions such as mouse hovering, clicking, etc. on malicious URLs

may cause unsuspecting Internet users to fall victims of identity theft or other scams. In this paper, we study the anatomy of

phishing URLs that are created with the specific intent of impersonating a trusted third party to trick users into divulging personal

data. Unlike previous work in this area, we only use a number of publicly available features on URL alone; in addition, we

compare performance of different machine learning techniques and evaluate the efficacy of real-time application of our method.

Applying it on real-world data sets, we demonstrate that the proposed approach is highly effective in detecting phishing URLs

with an error rate of 0.3%, false positive rate of 0.2% and false negative rate of about 0.5%, thereby improving previous results

on the important problem of phishing detection.

Keywords— Phishing URL, phishing websites, machine learning, web mining, phishing attack, URL classification

---***--

1. INTRODUCTION

Phishing, according to AntiPhishing Working Group [1], is

a criminal mechanism employing both social engineering

and technical subterfuge to steal consumers‟ personal

identity data and financial account credentials. For example,

a “phisher” sends out emails masquerading as a trustworthy

person or a reputable institution, such as a bank, to a large

number of random Internet users. The phishers trick users

by employing social engineering tactics inducing them to

click on a link to a forged site where the user is then asked

to provide private information, e.g., password, bank account

information, credit card number, social security number, etc.

Once the Internet users are lured into a fraudulent website,

even the experienced users are often fooled to fulfill the

website‟s primary goal [11].

The means of distribution of phishing URLs include, among

others, spam or phishing messages with links to the phishing

site, Blackhat search engine optimization (SEO) techniques,

Internet downloads, peer-to-peer (P2P) file sharing

networks, social networking sites, visiting vulnerable web

sites such as blogs, forums, comment accepting news

portals, instant messaging (IM), Internet Relay Chat (IRC),

etc.

Blacklisting is the most common anti-phishing technique

used by modern web browsers. However, study shows that

centralized, blacklist-based protection alone is not adequate

enough to protect end users from new and emerging zero-

day phishing webpages that appear in the thousands and

quickly disappear every day. The study also shows that

heuristics based phishing techniques outperform centralized

blacklisting techniques used by most web browsers [27].

What are needed to address the shortcomings of blacklisting

are methods that are discovery-oriented, dynamic, and semi-

automated. This approach should not replace, but

compliment the blacklist to provide defense-in-depth

mechanism to effectively combat the phishing attacks.

To that end, we present a heuristic-based methodology for

automatically classifying URLs as being potentially

phishing in nature. This methodology could then be used to

thwart a phishing attack by either masking the potentially

phishing URL, or by alerting the user about the potential

threat. Because of the focus on the URL itself, this approach

can be applied anywhere that a URL can be embedded, such

as in email, web pages, chat sessions, to name a few. We

evaluate our approach on real-world data sets with more

than 16,000 phishing and 31,000 non-phishing URLs. We

experimentally demonstrate that our approach can obtain an

error rate of less than 0.3% while maintaining about 0.2%

false positive and 0.5% false negative rates. Featured with

high accuracy rate, we believe that our light-weight

approach can be used by individual users in their system for

near real-time phishing URL detection.

The contributions of this paper are: 1) A demonstration that

a phishing URL can be detected by using the information on

the URL alone without looking at the actual web page

contents and regardless of the context or medium the URL is

distributed. 2) An examination of the importance of publicly

available information on a URL in the evaluation of whether

that URL is phishing. 3) A comparison of a number of

publicly available machine learning classifiers to determine

the best for classification of phishing URLs. 4) A

demonstration that the proposed methodology can be used

for near real-time application in detecting phishing URLs. 5)

A demonstration that the properties of phishing URLs

change over time and how the data drift can affect

classifiers‟ performances.

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Issue: 06 | Jun-2014, Available @ http://www.ijret.org 12

2. BACKGROUND

In this section, we provide a definition of phishing URL and

review some related works.

2.1 Definition of Phishing URL

Whittaker et al. [33] define a phishing web page as “any

web page that, without permission, alleges to act on behalf

of a third party with the intention of confusing viewers into

performing an action with which the viewers would only

trust a true agent of a the third party.” This definition, which

is similar to the definition of “web forgery”, covers a wide

range of phishing pages from typical ones – displaying

graphics relating to a financial company and requesting a

viewer‟s personal credentials – to sites which claim to be

able to perform actions through a third party once provided

with the viewer‟s login credentials. Thus, a phishing URL is

a URL that leads user to a phishing web page. Our study, by

this definition, is therefore independent of the attack vector

by which a phishing URL is distributed.

2.2 Related Work

This section provides related work in phishing attack

detection and classification using machine learning and non-

machine learning approaches.

2.2.1 Machine Learning Approaches

The work by Garera et al. [13] is the most closely related to

our work. They use logistic regression over 18 hand-selected

features to classify phishing URLs. The features include the

presence of certain red flag key words in the URL, some

proprietary features based on Google‟s PageRank and

webpage quality guidelines. Even though they do not

analyze the page contents to use as features, they use the

pre-computed page based features from Google‟s

proprietary infrastructure that they call Crawl Database.

They achieve a classification accuracy of 97.3% over a set

of 2,500 URLs. Direct comparison with our approach,

however, is difficult without access to the same datasets or

features. Though similar in goal, our approach differs

significantly in both methodology (considering new publicly

available features based on URLs alone and comparing

several different machine learning algorithms) and scale

(considering more features and an order-of-magnitude more

samples).

Ma et al. propose a method to classify malicious URLs

using variable number of lexical and host-based properties

of the URLs. Using these features, they compare the

accuracy of batch and online learning algorithms [18] and

[19]. Among 4 batch algorithms, they determine that

Logistic Regression performs the best for their problem. For

large-scale application in detecting malicious URLs, they

determine that Confidence-Weighted algorithm performs the

best among 4 online algorithms. Though we use some

similar features and classification models, our approach is

different in a number of ways. First, the scope of our work is

limited to detecting phishing URLs as opposed to detecting

wide range of malicious URLs. Our techniques can certainly

be extended to detecting and classifying wider range of

malicious URLs. Secondly, we have a fixed set of smaller

number of features. Thirdly, we do not use host-based

properties of web pages such as WHOIS entries, connection

speed, etc. Though WHOIS information can be very useful

in determining the reputation of hosts and registrars and the

reputation of the domains overall, it makes the repetition of

the experiments difficult.

Whittaker et al. [33] describe the design and performance

characteristics of a scalable machine learning classifier that

has been used in maintaining Google‟s phishing blacklist

automatically. Their proprietary classifier analyzes millions

of pages a day, examining the URL and the contents of a

page to determine whether or not a page is phishing. Their

system classifies web pages submitted by end users and

URLs collected from Gmail‟s spam filters. Though some

URL based features are similar, we propose several new

features and evaluate our approach with publicly available

machine learning algorithms and public data sets. Unlike

their approach, we do not use any proprietary and page

content based features.

Zhang et al. [34] present CANTINA, content-based

approach to detect phishing websites, based on the TF-IDF

information retrieval algorithm and the Robust Hyperlinks

algorithm. By using a weighted sum of 8 features (4 content-

related, 3 lexical, and 1 WHOIS-related) they show that

CANTINA can correctly detect approximately 95% of

phishing sites. The goal of our approach is to avoid

downloading the actual web pages and thus reduce the

potential risk of analyzing the malicious content on user‟s

system. In order to achieve this goal, we evaluate only the

features related to URLs.

A number of machine learning-based studies can be found in

related contexts such as in detecting phishing emails. Fette

et al. [12] use a set of 10 features extracted from email

headers, WHOIS information on sender‟s domain, email

contents, URL structures, etc. and apply Support Vector

Machines (SVMs) to classify phishing emails from

legitimate ham emails. We further improve the accuracy of

Fette et al. by introducing groups of keyword based features

from the email contents [3]. Using different classification

models we achieve classification accuracy of 98%, while

maintaining low false positive and negative rates. Fette et al.

[12] hypothesized that phishing email classification appears

to be simple text classification problem but, the

classification is confounded by the fact that the class of

“phishing” emails is nearly identical to the class of real

emails. Motivated by the hypothesis, we base the phishing

email classification problem as the text classification

problem in our previous work [5]. Using Confidence-

Weighted linear classifier, an online algorithm, and using

only the email text contents as “bag-of-words”

representation, we achieve a classification accuracy of 99%,

maintaining false positive and false negative rates of less

than 1% on public benchmark data sets.

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Issue: 06 | Jun-2014, Available @ http://www.ijret.org 13

2.2.2 Non-Machine Learning Approaches

Besides machine learning (ML) based techniques, there

exist many other approaches in phishing detection. Perhaps,

the most widely used anti-phishing technology is the URL

blacklist technique that most modern browsers are equipped

with [14] and [28]. Other popular methods are browser-

based plug-in or add-in toolbars. SpoofGuard [9] uses

domain name, URL, link, and images to evaluate the spoof

probability on a webpage. The plug-in applies a series of

tests, each resulting in a number in the range from 0 to 1.

The total score is a weighted average of the individual test

results. There has been an attempt to detect phishing attack

using user generated rules [6]. Other anti-phishing tools

include SpoofStick [30], SiteAdvisor [20], Netcraft anti-

phishing toolbar [23], AVG Security Toolbar [2], etc.

3. OUR METHOD

In this section, we describe in detail our approach to

detecting phishing URLs. We begin with an overview of the

classification problem, followed by a discussion of the

generation of our data sets, features we extract, and finally

the set of machine learning classifiers we use to evaluate our

methodology.

3.1 Method Overview

We propose a heuristic-based approach to classify phishing

URLs by using the information available only on URLs. We

treat the problem of detecting phishing URLs as a binary

classification problem with phishing URLs belong to the

positive class and benign URLs belong to the negative class.

We first run a number of scripts to collect our phishing and

benign URLs and create our data sets. Our next batch of

scripts then extracts a number of features by employing

various publicly available resources in order to classify the

instances into their corresponding classes. We then apply

various machine learning algorithms to build models from

training data, which is comprised of pairs of feature values

and class labels. Separate set of test data are then supplied to

the models, and the predicted class of the data instance is

compared to the actual class of the data to compute the

accuracy of the classification models. Figure 1 provides the

overview of graphical representation of phishing URL

detection framework.

Fig. 1 Overview of phishing URL detection framework

3.2 Data Sets

For experiments, we collected our data from various

credible sources that are also used by Ma et al. [18], Zhang

et al. [34], and many others. For phishing URLs, we wrote

Python scripts to automatically download confirmed

phishing websites‟ URLs from PhishTank. PhishTank is a

collaborative clearing house for data and information about

phishing on the Internet [25]. After signing up, developers

and researchers can download confirmed phishing URL lists

in various file formats with an API key provided for free. A

potential phishing URL once submitted is verified by a

number of registered users to confirm it as phishing. We

collected first set of 11,361 phishing URLs from June 1 to

October 31 of 2010 and call it OldPhishTank data set.

Phishing tactics used by scammers evolve over time. In

order to follow these evolving URL features and to closely

mimic the real-world scenario, we collected second batch of

5,456 confirmed phishing URLs that were submitted for

verification from January 1 to May 3, 2011. We call it

NewPhishTank data set.

In order to address URLs that were produced using

shortening services such as bit.ly, goo.gl, etc., we developed

a Python library [4] to utilize the web service API provided

by longurl.org to automatically detect and expand shortened

URLs. The service currently supports about 333 popular

shortening services. However, some short URLs – either

from some new and unsupported shortening services or

because the shortening services do not expand as the target

URL has been reported as phishing or malicious – do exist

in our data sets.

We collected the non-phishing URLs from two public data

sources: Yahoo! directory and DMOZ Open Directory

Project. We used Yahoo‟s server redirection service,

http://random.yahoo.com/bin/ryl, which randomly selects a

web link from Yahoo directory and redirects browser to that

page. In order to cover wider URL structures, we also made

a list of URLs of most commonly phished targets (using

statistics of top targets from PhishTank). We then crawled

those URLs, parsed the retrieved HTML contents, and

harvested the hyperlinks therein to also use as non-phishing

URLs. Those additional hyperlinks are assumed to be

benign since they were extracted from a legitimate source.

We use 22,213 legitimate URLs using these sources and call

it Yahoo data set. These URLs were collected between

September 15, 2010 and October 31, 2010. The other source

of legitimate URLs, DMOZ, is a directory whose entries are

vetted manually by editors. We use 9,636 randomly chosen

non-phishing URLs from this source and call it DMOZ data

set.

We then paired OldPhishTank and NewPhishTank data sets

with non-phishing URLs from a benign source (either

Yahoo or DMOZ). We refer to these data sets as the

OldPhishTank-Yahoo (OY), OldPhishTank-DMOZ (OD),

NewPhishTank-Yahoo (NY), and NewPhishTank-DMOZ

(ND).

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Issue: 06 | Jun-2014, Available @ http://www.ijret.org 14

Table 1: Feature Categories and Number of Features in

Each Category

Feature Category Feature Count

Lexical based 24

Keyword based 101

Search Engine based 6

Reputation based 7

Anywhere from a handful to tens of thousands of features

have been proposed and used in detecting phishing URLs.

We developed our set of 138 features based on related

works, drawing primarily from [3], [12], [13], [33], and

[34]. Some of these features are modified to fit our needs,

while others are newly proposed. The use of relatively small

number of fixed set of features makes the decision

boundaries less complex, and therefore less prone to over-

fitting as well as faster to evaluate for most batch

algorithms.

We group features that we gather into 4 broad categories.

Table 1 summarizes each category and the number of

features from that category that we use in our data sets for

classifying phishing URLs. We briefly describe each feature

category with their statistics from a randomly selected 80%

of OldPhishTank-Yahoo training data set (we call it

“Random Set”) in the following sub sections.

3.2.1 Lexical-based Features

Lexical features, the textual properties of the URL itself,

have been widely used in literatures [3], [12], [18], [19],

[33], and [34] in detecting phishing attacks.

We examine various obfuscation techniques phishers may

employ and derive a number of phishing like features to use

in our classifiers. For instance, we check if there‟s a port

number in a URL and check if the port belongs to the list of

standard HTTP ports: 80, 8080, 21, 443, 70, and 1080. If the

port number doesn‟t belong to the standard list, we flag it as

a potentially phishing URL.

There are 24 features in this category. We summarize the

real-valued and binary features separately in Table 2 and 3,

respectively. The decimal numbers are rounded to 2 digits

after the decimal point.

Table 2: Feature Categories and Number of Features in

Each Category

Feature

Description

URL Type Max Mi

n

Mean Med

-ian

Length of

Host

Phishing 240 4 21.38 19

Non-

phishing
70 5 18.77 18

Number of

„.‟ in Host

Phishing 30 0 2.13 2

Non-

phishing
5 1 2.14 2

Number

of„.‟ in Path

Phishing 18 0 0.86 1

Non-

phishing
13 0 0.25 1

Number of

„.‟ in URL

Phishing 30 0 3.00 3

Non-

phishing
15 1 2.38 2

Length of

Path

Phishing 380 0 24.55 15

Non-

phishing
360 0 10.74 1

Length of

URL

Phishing 999 13 66.09 18

Non-

phishing
383 15 41.22 33

Table 3: Summary of Lexical-based Binary Valued Features

and their Statistics

Feature Description % Phishing % Non-

phishing

„-„ in Host 2.02% 9.03%

Digit [0-9] in Host 30.06% 3.11%

IP Based Host 4.15% 0.00%

Hex Based Host 0.18% 0.00%

„-„ in Path 15.82% 6.64%

„/‟ in Path 98.39% 96.18%

„=‟ in Path 4.58% 0.16%

„;‟ in Path 0.07% 0.00%

„,‟ in Path 0.15% 0.28%

Has Parameter Part 0.18% 0.77%

Has Query Part 0.07% 0.01%

„=‟ in Query Part 13.45% 10.43%

Has Fragment Part 0.18% 0.77%

„@‟ in URL 0.33% 0.08%

„Username‟ in URL 0.33% 0.08%

„Password‟ in URL 0.02% 0.00%

Has Non-Standard

Port
0.01% 0.00%

„_‟ in Path 11.16% 8.41%

3.2.2 Keyword-based Features

Many phishing URLs are found to contain eye-catching

word tokens (e.g., login, signin, confirm, verify, etc.) to

attract users‟ attention. Garera et al. [13] selected 8 red flag

keywords to use as features. Whittaker et al. [33] use every

string token separated by non-alphanumeric characters out

of the URL to use as features. However, they rely on the

feature selection methods built into their machine-learning

framework to incorporate only the most useful of these

features into their classification models. Though our word

based feature extraction technique is somewhat similar to

theirs, the selection technique significantly differs as we

employ a formal feature selection technique which we

describe next.

Using the Random Set (Section III-B), we tokenize each

phishing URL by splitting it using non-alphanumeric

characters. After applying Porter stemmer [22], we obtain

12,012 unique root tokens and their frequencies. While we

could use every word token appearing on phishing URLs as

a feature  an approach taken by Ma et al. [18] and [19] to

detect malicious URLs  this many keyword based features

plus other features per URL can burden our batch learning

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Issue: 06 | Jun-2014, Available @ http://www.ijret.org 15

algorithms without yielding any performance benefit.

Instead, we discard all tokens with length < 3 such as d, c, e,

br, fr, it, etc. Some single-character tokens have high

frequencies, but offer no meaning. Two-character tokens are

mostly the country code top-level domains (ccTLD). We

also discard several common URL parts such as http, www,

com, etc. and webpage file extensions such as htm, html,

asp, php, etc. Since top target organizations such as paypal,

ebay, bankofamerica, wamu, etc. are covered by top target

list under reputation-based features, we discard them as

well.A large number of tokens have frequency one,

suggesting that they are not frequently used in phishing

URLs. Most of these words either do not make sense as a

whole or they have random characters such as ykokejox,

riversid, sxkretyvwufatnrmomgpqjdw, njghlfi, etc. We

discard these tokens as well. With this preliminary selection,

we are left with 1,127 tokens.

We then apply feature selection technique commonly used

in text classification. Feature selection serves two main

purposes. First, it makes the process of training and applying

a classifier more efficient by decreasing the size of the

discriminative features. This is of particular importance for

classifiers that, unlike Naïve Bayes, are expensive to train.

Second, feature selection often increases classification

accuracy by eliminating noise features. We compute mutual

information (MI) of each term in phishing class. MI

measures how much information the presence or absence of

a term contributes to making the correct classification

decision on a class [24]. MI is computed using the following

equation:

𝑀𝐼 𝑈; 𝐶 =
𝑁11

𝑁
𝑙𝑜𝑔2

𝑁𝑁11

𝑁1.𝑁.1
+

𝑁01

𝑁
𝑙𝑜𝑔2

𝑁𝑁01

𝑁0.𝑁.1
+

𝑁10

𝑁
𝑙𝑜𝑔2

𝑁𝑁10

𝑁1.𝑁.0
+

𝑁00

𝑁
𝑙𝑜𝑔2

𝑁𝑁00

𝑁0.𝑁.0
 (1)

where U is a random variable that takes values et = 1 (the

URL contains term t) and et = 0 (the URL does not contain

term t), C is a random variable that takes values ec = 1 (the

URL is in class c) and ec = 0 (the URL is not in class c), N s

are counts of URLs that have the values of et and ec that are

indicated by the two subscripts. For example, N10 is the

number of URLs that contain t (et = 1) and are not in c (ec =

0). N1. = N10 + N11 is the number of URLs that contain t (et =

1) and we count URLs independent of class membership (ec

ϵ {0, 1}). N = N00 + N01 + N10 + N11 is the total number of

URLs in the training set.

Terms with high MI values indicate that they are more

relevant to the class and are good discriminative features,

whereas terms with lower MI values indicate that they are

less relevant. For brevity, Table IV shows only the top 10

terms based on MI along with the percentage of each term

appearing in phishing and non-phishing URLs in the

Random Set.

Table 4: Top 10 root Terms (Based on Mutual Information)

and Their Statistics

Root

Term
MI

% Phishing

URLs

% Non-

phishing URLs

log 0.1740 21.77% 1.71%

pay 0.1027 13.26% 0.50%

web 0.0778 14.90% 1.62%

cmd 0.6840 10.08% 0.37%

account 0.0559 7.86% 0.34%

dispatch 0.0390 5.69% 0.01%

free 0.0362 7.20% 0.48%

run 0.0331 4.89% 0.16%

net 0.0320 13.05% 5.05%

confirm 0.0292 3.42% 0.00%

Note that the statistical values of each feature among

phishing and non-phishing URLs are rounded to 2 and MI

values are rounded to 4 decimal digits. Because some

keywords are so sparsely present among non-phishing URLs

in the training dataset, their statistical values are rounded to

0.00% (for instance, term confirm in Table 4). The only

feature term that is entirely absent among non-phishing

URLs from all data sets is config.

By ordering the terms based on MI values from high to low,

we then use these terms as binary features on data set OY.

Using forward feature selection method, we train and test

Naïve Bayes 1,127 times for each feature set size from 1 to

1,127 and record its error rate for each run. We choose

Naïve Bayes because of its speed and its effectiveness in

spam filtering application [29]  a problem similar to ours 

that uses “spammy” word tokens. Figure 2 shows the error

rates on feature size from 1 to 1,127.

Fig 2 Effects of keyword feature set size on error rate using

Naïve Bayes on OY dataset.

Initially, the error rate decreases significantly from ~29% to

~24% as the number of features increases. But after 100

features, the change in error rate is statistically insignificant

(< 0.1%) until all the features are added. Thus, we decide to

use the top 101 terms based on their MI as keyword based

features.

3.2.3 Reputation-based Features

PhishTank produces various top 10 statistical reports on

phishing websites every month. We downloaded 3 types of

statistics: Top 10 Domains, Top 10 IPs, and Top 10 Popular

Targets from the first batch of statistics published in October

2006 to October 2010. The idea behind this is to make use

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Issue: 06 | Jun-2014, Available @ http://www.ijret.org 16

of the historical data on top IPs and domains that host

phishing websites. If a URL has many other phishing related

heuristics and also its host belongs to top IP and/or top

domain that has historic reputation of hosting phishing web

pages, then we can increase our confidence level to classify

the URL in question as phishing. There are 311 unique

domains, 354 unique IPs, and 43 unique targets in the top 10

statistics during 4 years of period.

Features from PhishTank statistics may appear little biased

to use against detecting phishing URLs from the same

source. The idea, however, is to use features based on many

statistical reports similar to these on phishing web pages.

For instance, we include statistics from StopBadware.org,

which we explain next. We plan to find more public

statistics to use in our future work, and we hypothesize that

these features help in detecting phishing URLs if included

with many other discriminative features.

StopBadware.org works with its network of partner

organizations such as Google, Sunbelt Software, etc. and

individuals to fight back against viruses, spyware, etc. [31].

It produces top 50 IP address report from number of

reported URLs. We check if the IP address of a URL

belongs to this top 50 report and flag it as potentially

phishing if it does.

To the best of our knowledge, this is the first work to use

such publicly available historical statistics to detect phishing

URLs.

Several blacklists have been used by Ma et al. [18] and [19].

We use Safe Browsing API [14] to check URLs against

Google‟s constantly updated blacklists of suspected

phishing and malware pages and use 3 binary features for

membership in those blacklists. Essentially, these blacklists

are also used by Google Chrome and Mozilla Firefox to

warn users of potentially malicious websites.

Table 5 summarizes the distribution of reputation-based

features in phishing and non-phishing URLs.

Table: 5 Reputation-based Features and Their Statistics

Feature Description
% Phishing

URLs

% Non-

phishing

URLs

PhishTank Top 10

Domain in URL
20.98% 4.87%

PhishTank Top 10

Target in URL
32.65% 14.21%

IP in PhishTank Top 10

IPs
17.30% 0.87%

IP in StopBadware Top

50 IPs
2.31% 1.37%

URL in Phishing

Blacklist
42.41% 0.00%

URL in Malware

Blacklist
0.45% 0.05%

URL in RegTest

Blacklist
0.16% 0.00%

3.2.4 Search Engine-based Features

Google search engine has been used by Garera et al. [13],

Whittaker et al. [33], and Zhang et al. [34]. Whittaker et al.

use PageRank from Google proprietary infrastructure.

Garera et al. use Google‟s proprietary technologies such as

PageRank, page index, and page quality scores. These are

pre-computed during Google‟s crawl phase and are stored in

a table, which they call Crawl Database. Though the features

generated from the Google proprietary infrastructure seem

plausible, it makes the repetition and validation of

experiments extremely difficult if not impossible. On the

other hand, our search engine based feature gathering

technique uses either publicly available APIs or mimics

users using search engines to gather information on a URL.

Zhang et al. select the top 5 words with highest TF-IDF

value to generate lexical signature of a page. They feed each

lexical signature to Google search engine and check if the

domain name of the current web page matches the domain

name of the top 30 results. If yes, they consider it to be a

legitimate website. Though the goal is similar, we utilize

search engines in different ways. Instead of using the query

terms, we use the URL and its domain part.

We check if the URL exists in the search engines‟ index in

the following manner. First, we search for the whole URL

and retrieve the top 30 results. Our preliminary experiments

showed that retrieving top 10 results was enough to check if

a URL has been indexed. We use the top 30 results, even so,

to be on the safe side as the work by Zhang et al. show that

retrieving more than 30 results doesn‟t yield any

performance improvements. If the results contain the URL,

we consider it as a potentially benign URL, phishing

otherwise. We also check if the domain part of the URL

matches the domain part of any links in the results.

Similarly, if there is a match, we flag the URL as a

potentially legitimate URL. Otherwise, we query the search

engine again with just the domain part of a URL. If none of

the returned links matches the query URL, we flag the URL

as potentially phishing. If both the URL and the domain do

not exist in search engines index, it is a high indication that

the domain is a newly created one and the URL in question

is more likely to be phishing. Hence, we believe that these

features also compliment the „age of domain‟ feature based

on WHOIS used by most of the related works.

Our heuristic, however, makes certain assumptions that the

leading top 3 search engines index the vast majority of

legitimate websites and that legitimate sites usually live

longer and hence, the search engine crawlers will index

them sooner or later. On the other hand, the average time a

phishing site stays online is 4.5 days or even less [27], [34].

Moreover, there won‟t be that many links pointing to the

phishing web site. Because of the low life span and lack of

links pointing to the phishing web site, we assume that

search engines crawlers may not get to the site before they

are taken down. We employ 3 major search engines with the

strong reason that at least one of them may have indexed

legitimate website if not all. Furthermore, search engines

may try to filter out known malicious links from the search

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Issue: 06 | Jun-2014, Available @ http://www.ijret.org 17

results using their proprietary technologies. Thus, the

heuristic effectively leverages on top search engines

crawling resources and proprietary filtering techniques.

To the best of our knowledge, this is the first work to utilize

search engines in this manner to detect phishing URLs.

Search engine based features and their statistics are

summarized in Table 6.

Table: 6 Search Engine-based Features and Their Statistics

Feature Description
% Phishing

URLs

% Non-

phishing

URLs

URL NOT in Google

Top Results
98.71% 4.85%

Domain NOT in Google

Top Results
98.27% 2.64%

URL NOT in Bing Top

Results
96.95% 34.63%

Domain NOT in Bing

Top Results
96.34% 12.77%

URL NOT in Yahoo

Top Results
98.93% 17.74%

Domain NOT in Yahoo

Top Results
98.71% 13.95%

3.3 Classification Models

Since no single classifier is perfect, we evaluate several

supervised batch-learning classifiers. As researchers, we

have no vested interest in any particular classifier. These

classifiers are chosen mostly because they have been applied

to problems similar to ours, such as in detecting: spam and

phishing emails, phishing and malicious URLs, phishing

webpages, etc. We simply want to empirically compare a

number of classifiers based on their availability in

implementation and determine the one that yields the best

performance in terms of both training and testing time and

accuracy to the problem of detecting phishing URLs.

We evaluate the following 7 classifiers implemented in

WEKA (Waikato Environment for Knowledge Analysis)

library [15] with their default parameter values:

1) Support Vector Machines (SVMs with rbf kernel) [32]

2) SVMs with linear kernel

3) Multilayer Perceptron (MLP) [16]

4) Random Forest (RF) [8]

5) Naïve Bayes (NB) [17]

6) Logistic Regression (LR) [7]

7) C4.5 [26] – which is implemented as J48 in WEKA.

4. EMPIRICAL EVALUATIONS

Using the features described in Section III-C, we encode

each individual URL into a feature vector with 138

dimensions. We scale the real-valued features, available

mostly in lexical based features, to lie between 0 and 1.

Scaling equalizes the range of the features in real-valued and

binary features further emphasizing that we are treating each

feature as equally informative and important.

In order to evaluate our methodology, we perform 5 major

experiments. We use 10 times 10-fold cross-validation

(unless otherwise stated) to evaluate the classifiers. The

experiments are run on a machine with 2 dual-core 2 GHz

Intel processors and 4 GB memory.

4.1 Experiment 1- Classifier Evaluation

In this experiment, we evaluate classification performance

of 7 classifiers on all data sets using the whole feature set.

Figure 3, 4, and 5 compare the overall error rates, false

positive rates (FPR), and false negative rates (FNR)

respectively.

Fig. 3 Overall error rates of all classifiers on each of four

data sets using all features.

Fig. 4 False positive rates of all classifiers on each of four

data sets using all features

Note NB has 2.24% and 3.62% false positive rates on

OldPhishTank-Yahoo and NewPhishTank-Yahoo data sets

respectively.

Fig. 5 False negative rates of all classifiers on each of four

data sets using all features

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Issue: 06 | Jun-2014, Available @ http://www.ijret.org 18

Note SVM-rbf has 7.92% and AB has 8.98% false negative

rates on NewPhishTank-Yahoo data set.

The differences in overall error rates on all the classifiers are

not significant on each data set. Random Forest (RF)

performs the best in all performance metrics followed by

J48 on each of four data sets. Naïve Bayes (NB) consistently

performs the worst followed by SVM-rbf on all data sets.

Classifiers yield worst performance on NewPhishTank-

Yahoo data set mostly due to high false negatives that range

between 2.8–8.9%. RF‟s error rate ranges between 0.16–

0.95%, whereas the NB‟s error rate ranges between 0.86–

3.74%. J48 yields 0% false positives on NewPhishTank-

DMOZ data set. False positives rates are normally better

than false negative rates for all classifiers on each of the four

data sets.

We choose RF classifier in the rest of the experiments

primarily because its training and testing times are

reasonably fast (see Section IV-C-2) with best overall

classification accuracies.

4.2 Experiment 2 – Feature Evaluation

In this experiment, we compare various combinations of

feature sets to evaluate how effective each feature category

is in detecting phishing URLs. Specifically, we compare

individual feature category and combine it with the lexical

based feature category – the most commonly used feature

category in phishing detection. We use RF classifier on

OldPhishTank-Yahoo (OY) data set as it has sufficiently

good number of phishing and non-phishing URLs with

varieties in URL structures covering most feature categories.

Results on these experiments are displayed in Table 7.

Table 7: Search Engine-based Features and Their Statistics

Feature Category
Feature

Count

Error

Rate
FPR

Lexical based 24 14.62% 8.22%

Keyword based 101 15.39% 5.36%

Lexical + Keyword based 125 9.25% 5.73%

Reputation based 7 15.71% 2.69%

Lexical+ Reputation

based
31 8.37% 4.74%

Lexical + Keyword +

Reputation
132 5.88% 3.37%

Search Engine based 6 0.47% 0.15%

Lexical + Search Engine

based
30 0.37% 0.20%

All Features 138 0.31% 0.20%

When using lexical based feature type alone, RF classifier

achieves an error rate of 14.62%. Similarly, keyword based

feature type, which has 101 features, yields a 15.39% error

rate. When combined lexical with keyword-based features,

the error rate improves to 9.25%. Reputation based feature

set with 7 features provide the worst error rate of 15.71%.

What is interesting about these feature sets is that each set

provides better true negative rate than true positive rate.

This indicates that the absence of these features can detect

non-phishing URLs with good accuracy, but their presence

doesn‟t necessarily result in higher accuracy in detecting

phishing URLs. When the first three feature categories are

combined, the error rate significantly improves to 5.88%.

Search engine based feature set alone provides the lowest

error rate of 0.47%. It also provides the highest true positive

and true negative rates. The experiment on the data set with

all feature categories combined gives the best performance

results across all the metrics. The combined features provide

at best a 0.31% error rate. Search engine based features

provide the lowest false positive rate of 0.15% indicating

that very few non-phishing URLs are misclassified as

phishing using this feature set alone.

As feature selection technique is applied to reduce the size

of keyword based feature set (see Section III-C-2), we also

experiment using all 12,012 keyword-based features in

combination with the rest of the feature set. Using Random

Forests (RF) classifier on the OY data set, we obtain slightly

worse error rate of 0.75%. Higher error rate was expected

given so many uninformative keyword based noise features.

On the other hand, the training and testing time on RF was

noticeably slower. This emphasizes the importance of

feature selection to improve classifier‟s performance as and

when necessary. It would be interesting to see the results of

feature ranking and selection on the whole feature set. We

leave this for our future work.

These results demonstrate that search engine based features

are the most discriminative features in detecting phishing

URLs. Combining all the features, however, provide the best

accuracy confirming the importance of each feature

category.

4.3 Experiment 3 – Time Analysis

Next we investigate the feasibility of real-time application

of the proposed approach. In order to prevent Internet users

from clicking on phishing URLs in real-time, such a

proposed system needs to be highly accurate (very low false

positive and negative rates) and needs to have tolerably low

response time. In this experiment, we analyze time taken by

our prototype system in classifying whether a given URL

feed is phishing by considering time taken from generating a

feature vector to testing and getting the final verdict.

4.3.1 Feature Collection Time

We expect the system to take the most time in accessing the

web and collecting the proposed search engine and some

reputation-based features. In our prototype experimental

system, the single-threaded feature collector takes about

3.78 seconds in average to generate feature vector from a

phishing URL and 3.2 seconds in average from a non-

phishing URL. Thus, in general, it takes about 3.49 seconds

to collect all the features and generate the feature vector in

the format readable by the classifiers. The lower time taken

for non-phishing URLs is because most non-phishing URLs

are usually present in search engines results and as such the

feature collector doesn‟t have to query search engines again

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Issue: 06 | Jun-2014, Available @ http://www.ijret.org 19

for just the domain part of the URLs. We believe that we

can significantly lower the time to collect features by

employing parallel processing and local caching techniques

that can access the web and gather various features

simultaneously. We leave this as our future work when we

build a robust, scalable system to test in the real world.

4.3.2 Training and Testing Times

To provide better comparisons of time taken by the

classifiers to train and test the models and to find out the

time taken to classify an instance of URL, we use 80/20

percentage split on the OldPhishTank-Yahoo data set with

all features for training and testing purposes respectively.

We summarize the average results in Table 8 after running

the experiments for 5 times. The cross-validation time is the

time taken by classifiers in Experiment 1 on

NewPhishTank-Yahoo data set.

Table 8: Training and Testing Time Taken by all Classifiers on OY Data Set Using all Features

Average

Time

Total

Samples
RF J48 MLP LR

SMV-

lin

SVM-

rbf
NB

Train 26860 1.05 m 2.28 m 1.69 h 0.56 m 1.65 m 1.56 m 0.15 m

Test 6714 0.03 s 0.003 s 88.08 s 0.03 s 2.0 s 2.24 s 0.20 s

Test 1
0.021

ms
0.003

ms

13.12

ms

0.03

ms
1.33 ms 2.01 ms

0.19

ms

Cross-validation 27669 14.6 m 36.2 m 20.9 h 6.3 m 14.1 m 12.7 m 1.7 m

Naïve Bayes is widely used in spam filters partly because

the training and testing times are fast. We see similar result

with NB taking the fastest 0.15 minutes to build the model.

However, it also performs the worst in terms of error rate.

MLP has the worst training time (in hours) and also worst

testing time. We can observe that Random Forests (RF) has

one of the best tradeoff between train and test time and

overall accuracy. RF‟s training time is second best and

comparatively very close to that of NB‟s, and its overall

performance results are the best among all the classifiers

(see Experiment 1).

Though training time is generally higher compared to testing

time, training may be done offline and less frequently. It‟s

the test time that is crucial in providing the real-time service

of detecting phishing URLs.Time taken to test a URL, once

the model is trained, by most of the classifiers is in very low

milliseconds and negligible compared to time taken to

collect features. Overall, our single-threaded experimental

system can classify a URL in less than 3.5 seconds in

average. We understand that this time may not be acceptable

in real-time classification system. Nonetheless, we believe

that there‟s a lot of room for improvements during the

design and implementation of the system for large-scale

deployment to effectively provide near real-time service.

Furthermore, users may likely tradeoff some speed for its

high accuracy when it comes to detecting potentially

dangerous phishing URLs.

4.4 Experiment 4

In these experiments, we demonstrate how a classifier‟s

performance varies when using mismatched data sources

and temporal-based data sets.

4.4.1 Mismatched Data Sets

Features extracted by observing a particular data set can

yield impressive low classification error rates when trained

and tested on disjoint sets of the same data source using the

right classifier. However, experiment results from study by

Ma et al. [18] show that when training and testing sources

are completely mismatched, a classifier‟s performance

decreases significantly. To investigate if this phenomenon

holds in our case, we experiment with training and testing

on various combinations of phishing and non-phishing

sources of URLs. There‟s one caveat, however, in our

phishing URLs data sources. As we couldn‟t find the second

credible source for phishing URLs, we generate two

phishing data sets (separated by two whole months of

collection time) from the same source PhishTank as

described in Section III-B. Even though it may not make a

strong case for different sources, we argue that it does make

a very strong case for investigating data drift (evolving

features in phishing URLs, see Section IV-D-2).We use the

abbreviations defined in Section III-B to refer to each

combination of data sets, e.g., OY for Old PhishTank-

Yahoo.

Table 9: Training and Testing Time Taken by all Classifiers

on OY Data Set Using all Features

Training
Testing (Error Rate)

OY OD NY ND

OY 0.31% 0.08% 2.69% 4.96%

OD 10.92% 0.09% 13.39% 0.33%

NY 0.47% 0.79% 0.87% 0.21%

ND 10.45% 0.27% 12.54% 0.33%

All data sets

(OYND)
0.33% 0.06% 0.10% 0.16%

Table 9 shows classification results of training and testing

on mismatched data sets using Random Forest classifier.

As expected, when trained and tested RF classifier with the

same data set, the overall error rates are normally better

compared to when trained and tested with mismatched –

possibly different sources – data sets (see the diagonal

values in Table IX). When new phishing URLs are tested

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Issue: 06 | Jun-2014, Available @ http://www.ijret.org 20

against the model trained from old phishing URLs, the error

rate is 2.69% contributed mostly by false negatives.When

only the non-phishing URL source is mismatched (e.g., OD

and OY), error rate increases due to higher false positives.

This observation is similar to the one observed by Ma et al.

[18]. However, when only the phishing URL data sets are

mismatched (e.g., OD, ND), we do not see a big increase in

error rates. The worst error rate in this category is 2.69%

(OY and NY). This small increase in error rate may be due

to the fact that the source of phishing URLs are not

technically different but they differ by the time when

phishing URLs were submitted for verification. We look

more into this in the next section. When classifier is trained

with combination of any phishing data sets plus DMOZ

(OD, ND), and tested with combinations of phishing data

sets and Yahoo data set (OY, NY), the error ranges between

10–13%, contributed mostly by high false positives. When

trained with URLs from all the data sets, the model

generalizes well and yields good performance results across

all test data sets (last row). This experiment concludes that

the classifiers trained using URL data from one data source

may not generalize well while testing data from different

data source. Furthermore, it shows that training data set

needs to be selected properly that represent the actual test

environment in the real world in order to achieve the best

performance from a classifier in the important problem of

detecting phishing URLs.

Though instances in data sets may be different, we can

compare these results with those in Ma et al. [18] in cases

where the data sources are similar. Their data sets include

5,500 phishing URLs from PhishTank and all of their

benign URLs come from Yahoo and DMOZ.When trained

and tested with the various combinations of Yahoo, DMOZ,

and PhishTank data sources, our method achieves errors in

the range 0.06–13.39%, while their approach report errors in

the range 1.24–33.54% on the same data sources. They

achieve at best 0.90% on the split of the Yahoo-Spamscatter

data source showing that their approach is better at detecting

spam URLs than at detecting phishing URLs. We argue that

our approach achieves superior performance in detecting

phishing URLs.

4.4.2 Concept Drift

Phishing tactics and URL structures keep changing

continuously over time as attackers come up with novel

ways to circumvent the existing filters. As phishing URLs

evolve over time, so must the classifier‟s trained model to

improve its performance. Ma et al. [19] conclude that

retraining algorithms continuously with new features is

crucial for adapting successfully to the ever evolving

malicious URLs and their features. An interesting future

direction would be to find the effect of variable number of

features using online algorithms in detecting phishing

URLs.

We use OldPhishTank data set and 22,722 (twice the

number of phishing URLs) randomly selected non-phishing

URLs from Yahoo and DMOZ data sets as our “base”

training set. Figure 6 shows the classification error rates for

classifiers after training them only once using the “base”

training set. The x-axis shows number of weeks in the

experiment with the phishing URLs collected from January

1
st
 week to May 1

st
 week of 2011, and the y-axis shows the

error rates on testing the classifier with phishing URLs

collected each week. For non-phishing URLs, to generate

each week‟s test data, twice the number of phishing URLs is

randomly selected from Yahoo and DMOZ data sets.

Fig 6 Error rates for all classifiers after training them once

and testing them on weekly data.

While most classifiers perform poorly in this experiment,

J48 performs the worst for most of the weeks with error rate

reaching as high as 28% when testing with data from 3
rd

week of March (3\3). Random Forests (RF) and Logistic

Regression (LR), in general, perform better with error

ranging from 0–13%. For all the classifiers, the high error

rate is due to high false negatives, which get as high as 60–

80% for some weeks. For week 3\1 data, most classifiers

yield a 0% error rate, as there are only 2 phishing URLs and

4 non-phishing URLs for the week‟s test data. These high

error rates due to high false negative rates suggest that the

model must be retrained on fresh data to account for new

combinations of features on phishing and non-phishing

URLs over time in order to keep the model fresh and

achieve better performance.

To address this issue, we retrain classifiers every week with

training data collected up to that week and test on the data

from the following week. We show these results in Figure 7.

To test the models for data collected on January 1
st
 week

(1\1), for example, we train classifiers using “base” training

set. To test data collected on week 1\2, we retrain all the

classifiers with “base” training set plus all data collected up

to the previous week (1\1 in this case). As a result, the error

rates decrease over time due to significant improvement in

false negative rates week after week. For RF classifier, error

rate decreases from 9% on the first week to 0.4% for the last

week. Interestingly, we see the most improvement in

performance of J48. Its error rate starts with the highest 20%

for the first week and it gradually improves to 0.6% on the

last week. Although fresh data eventually helps most

classifiers improve over previous experiment where the

classifiers are trained only once, we feel that a week‟s

training data is still insufficient. By looking at the trends in

our experiments and as observed by Ma et al. [19], training

on daily data or perhaps using incremental training with

individual instance using online algorithms may improve the

results on classification of continuously changing phishing

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Issue: 06 | Jun-2014, Available @ http://www.ijret.org 21

URLs. But due to lack of enough data for a lot of individual

days in our data sets, we leave these experiments for future

work when we‟ll collect phishing URLs from several feeds

on a large scale.

Fig. 7 - Error rates for all classifiers after training them

every week.

4.5 Experiment 5 - Top Targets

In our OldPhishTank-Yahoo (OY) data set (see Section III-

B), we include legitimate URLs of top online brands that are

frequently targeted by phishers. Since our goal is to detect

phishing URLs that forge legitimate URLs, we try to

investigate how our proposed method performs against the

URLs from legitimate top targets. To that end, we combine

all the data sets (OYND) except the top targets‟ URLs and

use the combined 46,992 instances as a training data set. We

use the rest 1,674 instances as a test data set. When trained

and tested Random Forest (RF) with these data sets, it yields

a 19.35% error rate, meaning only 80.65% of legitimate

URLs related to the top targets are correctly classified as

non-phishing URLs and the rest are all misclassified as

phishing URLs. This large error rate is due to the fact that

these target URLs look very similar to the forged phishing

URLs, and the model, perhaps, is not trained with the types

of URLs that are seen during testing.

In order to address this, we randomly select 75% of

legitimate URLs from top targets and include them in the

training set and retrain the model. We test the newly trained

model with the remaining 418 instances of top target URLs.

As expected, the results improve significantly, yielding a

1.67% error rate, misclassifying only 7 non-phishing URLs

as phishing. This experiment further emphasizes the

importance of judicious selection of training data set with

proper representation of all the possible phishing and non-

phishing URLs the system will be actually tested against.

Unlike related works ([13], [18], [19], [33]), we explicitly

test the validity of our method on the actual phishing targets

and show that our method yields good accuracy results in

detecting not only the phishing URLs but also in detecting

the legitimate URLs of the actual targets.

5. DISCUSSIONS

5.1 Limitations

Despite offering low error rates, there are some limitations

to our study. First, all of our phishing URLs came from a

single source PhishTank; therefore the URLs received may

not be representative of all phishing URLs. However,

PhishTank not only automatically collects potential phishing

URLs from users‟ email applications, it also allows

registered users to manually submit a URL (perhaps

received from various attack vectors besides email) for

verification.

Search engine based features contribute to a major

performance bottleneck due to the time lag involved in

querying search engines. Also the service providers may

either permanently block our system citing potential of

service (DoS) attack originating from our system or

temporarily limit the access to their services to manage

throttle. Using local caching, our system must manage not to

flood search engines with requests.

As our reputation based features rely on blacklists and other

historical statistics provided by third parties, we have no

control over the quality and reliability of the services and

data provided by them. Though absence of these features

may not significantly hurt the performance of our approach,

we certainly can look for alternative sources.

PyLongURL script [4] couldn‟t automatically expand some

shortened phishing URLs mostly because the legitimate

shortening services blocked and removed them after

receiving reports of phishing attacks. Even though these

short URLs lack all the lexical and keyword based features,

most of them are correctly classified because of the search

engines and reputation-based features. This is very less

likely to happen on legitimate URLs shortened using

legitimate shortening services as the script will be able to

expand them to their final URLs. Nevertheless, we

experimented on OldPhishTank-Yahoo data set after

removing the shortened URLs that couldn‟t be automatically

expanded. The differences in classifiers‟ performance

results, however, were statistically insignificant.

5.2 Error Analysis

We examine URLs that contributed to false positives and

false negatives. This can further reveal limitations of the

approach and possibly provide potential improvements to

the current approach. We examine the test results on the

whole data set (ONYD) with all features using Random

Forest classifier with 80/20 percentage split test option.

Some internal links that we harvested from legitimate highly

targeted web sites have properties similar to phishing URLs,

for examples:

http://www.standardbankbd.com/pages_details.php?id=35

&phpsessid=39327de0de6269760dc6a1f3fb630,

http://moneysense.natwest.com/natwest/adults/makingbanki

ngsimple/loans.asp?page=MONEYSENSE/ADULTS/MAKI

NG_BANKING_SIMPLE/LOANS, etc. Perhaps newly

generated links or due to the way search engines index

URLs, the search engines didn‟t have these links indexed.

Because some target names and some keywords such as

login, signoff, etc. are present in them and they are usually

lengthy as seen in examples, these non-phishing URLs

resemble more like phishing URLs. However, this is as

much an issue with the selection of training data as it is with

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Issue: 06 | Jun-2014, Available @ http://www.ijret.org 22

the methodology. Perhaps a second and much shorter work

could mitigate these false positives using enhanced benign

URL harvesting methods. Similarly, our method may flag

new legitimate web pages as phishing in particularly those

that have not yet been crawled and indexed by search

engines.

Some URLs such as http://whoblocksyou.net,

http://www.checkmessenger3.net/en/, http://you-

areblocked.com, http://www.yahooblockchecker.info/, etc.

and their variants are classified as non-phishing. This group

of web pages promises users to find if any contacts in MSN,

Yahoo or any common instant messenger have blocked you

once you provide your email and password. These websites

seem to be around for a while, some from as far back as

2007. Even though they have been confirmed as phishing

sites by the PhishTank community long back, interestingly,

the sites still exist. Moreover, Chrome, Firefox, and Internet

Explorer didn‟t block these web sites (as of August 10,

2011) implying that these links were not in their blacklists.

Other group of web pages such as

http://home.comcast.net/~mikeskipper/,

http://habbomatanza.galeon.com/, etc. hosted on free

legitimate hosting services contributed to more false

negatives. These URLs do not have any red flag keywords

and their domain and in some instances even the whole

URLs were in search results and were not in browsers

blacklists.

We believe that by looking into the page contents of URLs,

some of these false negatives can be mitigated.

5.3 Tuning False Positives and Negatives

In case of detecting phishing URLs, false positives may be

tolerated more than false negatives or vice versa. With false

positive URLs, users have to be extra vigilant while loading

the URL and manually confirm if the webpage is legitimate

before submitting any sensitive personal information. False

negatives, on the other hand, may provide false sense of

security and users may end up giving up their personal

information to a forged webpage. Instead of minimizing the

overall error rate, for policy reasons or personal security

preferences, users may want to tune the decision threshold

to minimize the false negatives at the expense of more false

positives or vice versa.

Figure 8 shows the tradeoff between false negative and false

positive rates as an ROC graph for Random Forest over an

instance of whole data set (ONYD) using all the features.

The highlight on the figure shows that if the false positives

are tuned to 0.15%, the model achieves a false negative rate

of 3.16%. If we can tolerate a little higher false positive rate

to 0.4%, however, we can achieve a lower false negative

rate of 1.05%.

Fig. 8 ROC graph showing tradeoff between false negatives

and false positives. Note that the x-axis ranges between 0-

1%

5.4 Potential Adversarial Attacks

As search engine based features are highly discriminative,

attackers may try to launch distributed denial of service

(DDoS) attack on search engines. It is not very likely to

happen on all three of them simultaneously, however.

Though quality and index size of a search engine plays a big

role in our approach to correctly classify phishing and

legitimate URLs, we can look for an alternative as there are

plenty to choose from. Using Blackhat SEO techniques,

adversaries can get their phishing websites crawled in a

short period of time. Though page ranking is not an issue,

our technique may provide a large number of false negatives

if phishing links are simply found in search engines‟

indexes. Adversaries may buy established domain names or

establish a new web site hosting benign contents for a while.

Once the major search engines index the web site, they may

exploit this fact and start hosting phishing web pages

effectively avoiding search engine based features.

Consequently, buying a domain name, hosting a website for

a long time, employing Blackhat SEO to alter the PageRank

of a phishing page require significant investment, which

reduces the potential profit from the phishing campaign.

Phishers may try to evade our heuristic-based approach by

using new URL shortening services that we are either not

aware of or do not know how to utilize the service

automatically. Study shows that scammers are now

establishing their own fake URL-shortening services [21].

Under this scheme, shortened links created on these fake

URL-shortening services are further shortened by legitimate

URL-shortening sites. These links are then distributed via

phishing emails, blogs, micro-blogs, and social networking

websites. Though we didn‟t observe it in our data sets, we

anticipate this tactic to be used against our proposed system

and see a need to address it in our future work. We can

always enhance the capabilities of our URL expanding

script by actively looking out for new shortening services

and incorporating them into our script. Moreover, in order to

successfully evade our approach, phishers not only have to

use a rare shortening service, but also have to work hard to

get those short links indexed by search engines.

Adversaries may try to reduce the information content in the

lexical and keyword based features of URLs thus effectively

reducing the phishing like features and making their links

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Issue: 06 | Jun-2014, Available @ http://www.ijret.org 23

more legitimate. Another approach is to leverage well-

known infrastructure such as hosting phishing page on a

legitimate popular domain such as free webhosting services

or by breaking into legitimate web sites or by exploiting

common Cross-site Scripting (XSS) vulnerabilities [10]. We

can overcome this drawback by looking into the contents of

the web pages. This drawback, however, is not particular to

our approach, but to all the approaches that rely only the

URL metadata and structures to detect potential

maliciousness.

To make reputation based features less suspicious, phishers

may try to host their contents in domains and IPs that do not

have historically bad reputation of hosting malicious

websites. Sites with good reputation, however, are either too

difficult to exploit or their administrators typically remove

malicious pages under their control promptly, thus limiting

the potential audience and profitability of phishing

campaign hosted in their web servers.

Furthermore, since we provide equal weight to all the

features, phishers do not have an opportunity to target

higher weight features in order to invade our classifiers.

6. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed new search engines, reputation,

and statistically mined keyword based features for

classifying phishing URLs. We empirically demonstrated

that the proposed features are highly relevant to the

automatic discovery and classification of phishing URLs.

We evaluated our approach on real-world public data sets by

comparing performance results of several popular

supervised learning methods. Experimental results showed

that the proposed anti-phishing solution was able to detect

phishing URLs with an accuracy of more than 99.4% while

maintaining false positive and false negative rates of less

than 0.5%. We showed that our experimental prototype,

once trained, could classify a given URL as phishing or non-

phishing with a turnaround time of about 3 seconds.

Most classifiers except Naïve Bayes showed statistically

similar performance metrics. For our problem, Random

Forest (RF) classifier, however, provided the best tradeoff

between the classification performance and the training and

testing time. RF consistently outperformed all other

classifiers in most experiments. We have shown that the

steps of selecting representative training set and retraining

algorithms continuously with fresh data are crucial aspects

in adapting successfully to the ever-evolving stream of

URLs and their features.

As our future work, we plan to develop a framework using

this approach and deploy it for a large-scale real-world test.

We hope to improve the feature collection time by

employing parallel processing and local caching. We will

also investigate the effectiveness of online algorithms as

they have been found to outperform traditional batch

algorithms in problem similar to ours [19]. We believe that

by looking into the contents of web pages, we can further

improve false positives and negatives. We‟re currently

investigating this matter as well.

ACKNOWLEDGMENTS

The authors would like to acknowledge the generous

support received from ICASA (the Institute for Complex

Additive Systems Analysis), a division of New Mexico

Tech. Thanks go to Max Planck, Darryl Ackley, and Tenzin

Doleck for providing helpful feedbacks on the paper.

REFERENCES

[1] APWG. 2010 1st Quarter Report,

http://www.antiphishing.org/reports/apwg_report_Q1

_2010.pdf, accessed on January 17, 2011.

[2] AVG Security Toolbar,

http://www.avg.com/product-avg-toolbar-tlbrc#tba2,

accessed on July 10, 2011.

[3] R.B. Basnet, S. Mukkamala, A.H. Sung, Detection of

phishing attacks: a machine learning approach, In:

Bhanu Prasad (Ed.), Studies in Fuzziness and Soft

Computing, Springer, 2008, pp. 373-383.

[4] R.B. Basnet, PyLongURL - Python library for

longurl.org, software available at:

http://code.google.com/p/pylongurl/, 2010.

[5] R.B. Basnet, A.H. Sung, Classifying phishing emails

using confidence-weighted linear classifiers, In: Proc.

Int. Conf. Information Security and Artificial

Intelligence, ISAI„10, Chengdu, China, 2010, pp.

108-112.

[6] R.B. Basnet, A.H. Sung, Q. Liu, Rule-based phishing

attack detection, In: Proc. Int. Conf. Security and

Management , SAM‟11, Las Vegas, NV, USA, 2011.

[7] M.T. Brannick, Logistic regression,

http://luna.cas.usf.edu/~mbrannic/files/regression/Lo

gistic.html, accessed on February 27, 2011.

[8] L. Breiman, Random forests,

http://oz.berkeley.edu/users/breiman/randomforest20

01.pdf, 2001, accessed on February 20, 2011.

[9] N. Chou, R. Ledesma, Y. Teraguchi, D. Boneh, J.

Mitchell, Client-side defense against web-based

identity theft, In: Proc. 11
th

 Network and Distributed

System Security Symposium, NDSS‟04, San Diego,

CA, USA, 2004.

[10] Cross-site Scripting (XSS),

http://www.owasp.org/index.php/Cross-

site_Scripting_(XSS), accessed on March 12, 2011.

[11] R. Dhamija, J.D. Tygar, Hearst M, Why phishing

works, In: Proc. Int. Conf. Human-Computer

Interaction, CHI‟06, Montreal, Quebec, Canada,

2006, pp. 581-590.

[12] I. Fette, N. Sadeh, A. Tomasic, Learning to detect

phishing emails, In: Proc. Int. Conf. World Wide

Web, WWW‟07, Banff, Alberta, Canada, 2007, pp.

649-656.

[13] S. Garera, N. Provos, M. Chew, A.D. Rubin, A

framework for detection and measurement of

phishing attacks. In: Proc. 5
th

 ACM Workshop on

Recurring Malcode, WORM‟07, ACM, New York,

NY, USA, 2007, pp. 1-8.

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Issue: 06 | Jun-2014, Available @ http://www.ijret.org 24

[14] Google Safe Browsing API - Google Code,

http://code.google.com/apis/safebrowsing/, accessed

on June 12, 2010.

[15] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P.

Reutemann, I.H. Witten, The WEKA data mining

software: an update, SIGKDD Explorations, 11

(2009) 10-18.

[16] K. Hornik, Multilayer feedforward networks are

universal approximators, Neural Networks 2 (1989)

359-366.

[17] G.H. John, P. Langley, Estimating continuous

distributions in Bayesian classifiers, In: Proc. 11
th

Conf. Uncertainty in Artificial Intelligence, San

Mateo, CA, USA, 1995, pp. 338-345.

[18] J. Ma, L.K. Saul, S. Savage, G.M. Voelker, Beyond

blacklists: Learning to detect malicious web sites

from suspicious URLs, In: Proc. 15
th

 ACM SIGKDD

Int. Conf. Knowledge Discovery and Data Mining,

Paris, France, 2009, pp. 1245-1254.

[19] J. Ma, L.K. Saul, S. Savage, G.M. Voelker,

Identifying suspicious URLs: an application of large-

scale online learning, In: Proc. 26
th

 Annual Int. Conf.

Machine Learning, ICML‟09, Montreal, Quebec,

Canada, 2009, pp. 681-688.

[20] McAfee SiteAdvisor Software – Website Safety

Ratings and Secure Search,

http://www.siteadvisor.com, accessed on July 15,

2011.

[21] Microsoft Security Intelligence Report, Vol.10, 2011,

http://www.microsoft.com/security/sir/default.aspx,

accessed on June 5, 2011.

[22] Natural Language Toolkit (NLTK),

http://www.nltk.org, accessed on July 15, 2011.

[23] Netcraft Anti-Phishing Toolbar,

http://toolbar.netcraft.com, accessed on June 23,

2011.

[24] H. Peng, F. Long, C. Ding, Feature selection based

on mutual information: criteria of max-dependency,

max-relevance, and min-redundancy, IEEE

Transaction on Pattern Analysis and Machine

Intelligence 27 (2005) 1226-1238.

[25] PhishTank. Out of the net, into the tank,

http://www.phishtank.com, accessed on June 18,

2010.

[26] J. R. Quinlan, C4.5 programs for machine learning,

Morgan Kaufmann Publishers, San Mateo, CA, USA,

1993.

[27] S. Sheng, B. Wardman, G. Warner, L.F. Cranor, J.

Hong, C. Zhang, An empirical analysis of phishing

blacklists, In: Proc. 6th Int. Conf. Email and Anti-

Spam, CEAS‟09, Mountain View, California, USA,

2009.

[28] SmartScreen Filter – Microsoft Windows,

http://windows.microsoft.com/en-US/internet-

explorer/products/ie-9/features/smartscreen-filter,

2011.

[29] SpamBayes: Bayesian anti-spam classifier written in

Python, http://spambayes.sourceforge.net, accessed

on July 27, 2011.

[30] SpoofStick Home, http://www.spoofstick.com,

accessed on July 25, 2011.

[31] StopBadware, IP Address Report – Top 50 by

number of reported URLs,

http://stopbadware.org/reports/ip, accessed on June

12, 2010.

[32] V.N. Vapnik, The nature of statistical learning

theory, Springer, 1995.

[33] C. Whittaker, B. Ryner, M. Nazif, Large-scale

automatic classification of phishing pages, In: Proc.

17
th

 Annual Network and Distributed System

Security Symposium, NDSS‟10, San Diego, CA,

USA, 2010.

[34] Y. Zhang, J. Hong, L. Cranor, CANTINA: a content-

based approach to detecting phishing web sites, In:

Proc. 16
th

 Int. Conf. World Wide Web, WWW‟07,

Banff, Alberta, Canada, 2007, pp. 639-648.

