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ABSTRACT 
This study examines student performance distributions evidence bimodality, or 
whether there are two distinct populations in three introductory computer science 
courses grades at a four-year southwestern university in the United States for the 
period 2014-2017. Results suggest that computer science course grades are not 
bimodal. These findings counter the double hump assertion and suggest that proper 
course sequencing can address the needs of students with varying levels of prior 
knowledge and obviate the double-hump phenomenon. Studying performance helps 
to improve delivery of introductory computer science courses by ensuring that courses 
are aligned with student needs and address preconceptions and prior knowledge and 
experience. 

Keywords: computer science performance, coding, programming, double hump, 
grade distribution, bimodal distribution, unimodal distribution 

 

BACKGROUND 
In recent years, there has been a resurgence of interest in the practice of coding (Kafai & Burke, 2013), with many 
pushing for making it a core competency for students (Lye & Koh, 2014). There are inherent challenges in learning 
to code evidenced by high failure and dropout rates in programming courses (Ma, Ferguson, Roper, & Wood, 2011; 
(Qian & Lehman, 2017; Robins, 2010). These crucial issues go to the core of teaching coding (Robins, Rountree, & 
Rountree, 2003; Watson & Li, 2014) and demand our attention given the growing need for coders across a broad 
range of careers as “seven million job openings in 2015 were in occupations which value coding skills” (Burning 
Glass, 2016, p. 3; Dishman, 2016; Thompson, 2018). The computer science education community has recognized the 
importance of better understanding students’ performance in computer science courses for improving student 
outcomes (Alturki, 2016; Ott, Robins, Haden, & Shephard, 2015; Zingaro, 2015), and many have noted a bimodal 
distribution of grades in computer science (Corney, 2009; Dehnadi & Bornat, 2006; Robins, 2010). These researchers 
suggest that there are two distinct groups of computer science students, one stronger and one weaker, that can even 
be observed in distributions of learning outcomes in introductory computer science courses. 

Over a decade ago, Dehnadi and Bornat (2006) advanced the notion of double hump, positing that “there at 
least two populations in initial programming courses” (Dehnadi & Bornat, 2006, p.16). Or as Robins (2010) put it, 
“the typical introductory programming (CS1) course has higher than usual rates of both failing and high grades, 
creating a characteristic bimodal grade distribution” (p.37). However, supporting evidence remains inconclusive 
and this contention remains rather controversial to date as it implies that students either get it or they don’t. As 
Dehnadi and Bornat (2006) reasoned, “programming teaching is useless for those who are bound to fail and 
pointless for those who are certain to succeed” (p. 1). In the computer science education literature various 
explanations for the purported bimodal grade distribution have been offered, including: the geek gene hypothesis, 
prior knowledge (students with and without experience), stumbling point hypothesis, threshold concepts, learning 
edge momentum effect, and poor assessment strategies (Ahadi & Lister, 2013; Lister, 2010; Patitsas, Berlin, Craig, 
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& Easterbrook, 2016; Robins, 2010). Roughly speaking, these hypotheses are either related to student or course 
characteristics. Those related to student characteristics state that some students have an ability for programming, 
or that students’ prior experience and knowledge favorably predispose them to programming. Related to course 
characteristics, researchers have suggested that some concepts have specific antecedents to understanding, and lack 
of those prerequisite concepts may act as threshold or stumbling point to further progress, disadvantaging those 
that do not possess the requisite knowledge or skill to advance with the rest of the group. 

An assertion such as the one by Dehnadi and Bornat’s (2006) was bound to prompt a reaction: the work piqued 
the interest of computer science education researchers, and set in motion two general channels of studies that have 
tried to both replicate and explicate the idea of double hump in computer science. The first stream of work involves 
using the aptitude test proposed by Dehnadi and Bornats (2006) to illustrate the double hump phenomenon. Much 
of the research has failed to find support for the aptitude test (e.g., Caspersen, Larsen, & Bennedsen, 2007; Lung, 
Aranda, Easterbrook, & Wilson, 2008; França, da Cunha & da Silva, 2010; Wray, 2007).  

The second stream of work has focused on examining performance data to ascertain the existence of the double 
hump. The research reported in this article falls in this second stream of work. Several ensuing contributions are 
worth highlighting. Robins (2010) explored simulated grade distribution by running a simulation study to provide 
an account (learning edge momentum effect) for the bimodal grade distributions. Höök and Eckerdal (2015) 
provided evidence for bimodal distribution of the final grades in an introductory programming course, but noted 
that it “depends on the correction procedure rather than the distribution of the results of the exam” (p. 79).  

Ahadi and Lister (2013), who examined four tests from an introductory programming course, highlighted the 
complexity of accounting for the bimodal grade distribution and noted that: “advocates of the various hypotheses—
Geek Genes, Prior Knowledge, Stumbling Points and Learning Edge Momentum —can all find support for their 
respective hypotheses, in aspects of the data in this paper” (p. 126). Using 778 distributions of final course grades, 
Patitsas, Berlin, Craig, and Easterbrook (2016) found that only 5.8% of the distributions passed tests of 
multimodality. Moreover it is common to find general statements and anecdotes in the literature about the 
bimodality phenomenon without relevant evidence. For example, Corney (2009) noted that: “Faculty data typically 
has shown a bimodal distribution of results for students undertaking introductory programming courses with a 
high proportion of students receiving a high mark and a high proportion of students receiving a low or failing 
mark” (p. 1). The anecdotal statement is accepted on face value and no further supporting evidence is provided. 
Furthermore, Patitsas, Berlin, Craig, and Easterbrook (2016) noted that prior work on the bimodality distribution 
phenomenon in CS performance has generally lacked robust statistical testing, with many resorting to visual 
inspections of distributions to assess bimodality (Lister, 2010). Hence, there is a need to further understand the 
topic by conducting robust statistical testing on actual performance data from computer science courses. Finally, a 
recent development comes in the form of a retraction notice from one of the co-authors of the original article, who 
acknowledged errors in the original paper (Bornat, 2014); nevertheless, the debate on the topic continues.  

The present research conducted robust statistical tests on student performance data from three introductory 
courses in computer science in an effort to enrich our understanding of the purportedly bimodal distribution in 
achievement scores in the context of computer science.  

Present Study 
Most of the existing evidence for and against the double hump comes from the test for programming aptitude 

proposed by Dehnadi and Bornat (2006). A smaller set of studies uses actual performance data such as final grades 
from computer science courses (Patitsas, Berlin, Craig, & Easterbrook, 2016). Computer science course performance 
data provide a real-life context for examining the double hump phenomenon. 

To gain better insight into the phenomenon, the present retrospective exploratory study drew on data overall 
course grade from three computer science courses (CSCI 110, CSCI 111, and CSCI 112) over a three-year period 
from 2014-2017 at a southwestern university in the United States to answer the following research question:  

Does the phenomenon of double hump exist in computer science course grades?  

Contribution of this paper to the literature 

• Performance distributions from three introductory computer science courses reveal unimodal distributions 
contrary to the conjecture of bimodality of student performance distribution. 

• High skewness and kurtosis of performance distributions are characteristic of criterion-based rather than 
norm-referenced assessments. 

• Faculty course sequence planning can address the needs of two distinct student populations by instituting 
an optional course for those with no prior programming experience. 
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To address the overarching research question, we analyzed the data in the spirit of Patitsas et al. (2016) and 
provide the following statistics: kurtosis, skewness, Shapiro-Wilk Test of Normality, and Hartigan’s dip test statistic 
(Hartigan & Hartigan, 1985) for unimodality/multimodality. The values for kurtosis, skewness, Shapiro-Wilk Test 
of Normality were calculated using SPSS. The dip test statistic was calculated using the R package dip test. 

CONTEXT: DESCRIPTION OF COURSES 

CSCI 110: Beginning Programming: Python 
CSCI 110 (3 credit hours) is an introduction to programming course with a prerequisite of MATH 110 (College 

Algebra) or Math 119 (Pre-Calculus). Students from various disciplines take this course as an introduction to the 
field of Computer Science. Additionally, computer science students with no prior programming experience or those 
who do not meet the MATH 110 prerequisite for CSCI 111 course typically take this course. The course covers some 
basics of Linux and students learn to code in the Linux environment using Python as the programming language 
to learn basic programming concepts such as data types, variables, functions, automated testing, I/O, loops, 
conditionals, and Python built-in libraries and data types. CSCI 110 is not a required or core-course for Associate 
or Bachelor’s Degrees in Computer Science. One section of this course is offered every semester with a maximum 
student enrollment of 30. There’s an optional lab (1 credit hour) component that we excluded from this study. 
Weekly homework is assigned to assess and enforce the concepts covered. Some professors assign problems from 
open.kattis.com and submit solutions to Kattis online judge for testing. This practice has been studied and it has 
been found that most students are very engaged with Kattis and they continue to use Kattis beyond the classroom 
(Basnet, Doleck, Lemay, & Bazelais, 2018). In some cases, short quizzes and tests are also given to further assess 
students’ understanding of the concepts and retention of the materials. Typically, students are assigned an 
individual final project towards the end of the semester. 

CSCI 111: Foundation of Computer Science 
CSCI 111 (4 credit hours) is the foundational course that covers problem solving techniques emphasizing 

modularity, abstraction, analysis, and correctness of algorithm design. Using C/C++ language as a tool, topics 
covered include data types, control structures, I/O, functions, struct, and some object-oriented concepts. MATH 
113 (College Algebra) or CSCI 110 is a prerequisite for this course. CSCI 111 is a required core-course for Computer 
Science majors. Other disciplines, such as Mathematics and Engineering, may also require their students to take 
this course. Depending on the demand for the semester, 2 to 3 sections (max 35 students) of CSCI 111 are offered 
every semester. About 5-7 quizzes and 6-8 homework assignments are given throughout the semester to assess 
students’ learning. Either a final project or a comprehensive exam is assigned towards the end of the semester. 
Assignments typically cover problems that emphasize the concepts covered during the course. Similar to CSCI 110, 
some professors assign problems from open.kattis.com in this course as well. 

CSCI 112: Data Structures 
CSCI 112 (4 credit hours) is the continuation of CSCI 111. The course emphasizes algorithm design and analysis, 

procedural abstraction, data abstraction, and quality programming style. Topics covered include distinction 
between dynamic and static variables; run-time exception handling; automated testing; various implementations 
of elementary stacks; queues, trees and linked lists; comparison of recursive and iterative algorithms; program 
correctness; and, hierarchical design principles. Depending on student enrollment, 1 to 2 sections (max 35 students) 
are offered every semester. About 6-8 homework assignments and 3-5 tests are given throughout the semester to 
emphasize students’ learning and assessment. Some professors assign problems from Kattis in this course as well.  

PARTICIPANT PROFILE 
The responsible Institutional Review Board approved the current study. Anonymized data were obtained from 

the registrars after obtaining ethical approval for the study. The summary of the data (age, gender, ethnicity, and 
course load) is provided below.  

 

Table 1. Age Distribution of Students 
 Course Taken  

Age Group CSCI 110 CSCI 111 CSCI 112 Total 
24 or younger 63 75% 353 83% 176 80% 592 

25 or older 21 25% 72 17% 43 20% 136 
 84  425  219  728 
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ANALYSIS 
Skewness and kurtosis statistics and frequency distributions, reported below, were inspected for evidence of 

bimodality. Contrary to the double hump assertion, the course grade distributions for the computer science courses 
in the present study were largely unimodal. In the dataset presented above, 90% of the cases displayed unimodal 
grade distributions. The findings are similar to Patitsas et al. (2016), who found that, for the final computer science 
grades, about 5.8% of cases were bimodal distributions. Additionally, we found that a large proportion of the grade 
distributions were normal, also in line with the findings of Patitsas et al. (2016).  

 
 

Table 2. Gender of Students 
 Course Taken  

Gender CSCI 110 CSCI 111 CSCI 112 Total 
Male 69 82% 347 82% 190 87% 606 
Female 15 18% 78 18% 29 13% 122 

 84  425  219  728 
 

Table 3. Ethnicity of Students 
 Course Taken  

Ethnicity CSCI 110 CSCI 111 CSCI 112 Total 
Asian 3 4% 6 1% 7 3% 16 
Pacific Islander 0 0% 3 1% 1 0% 4 
African American 0 0% 7 2% 3 1% 10 
Hispanic 14 17% 62 15% 28 13% 104 
Native American 2 2% 0 0% 0 0% 2 
Multi-Racial 2 2% 13 3% 6 3% 21 
White 55 65% 308 72% 160 73% 523 
Non-Resident Alien 7 8% 15 4% 7 3% 29 
Unknown 1 1% 11 3% 7 3% 19 

 84  425  219  728 
 

Table 5. Statistical Results For CSCI 110 
      Hartigan’s Dip Test 

Semester Kurtosis  Skewness  Shapiro-Wilk Normality Test D p-value 
Fall 2014 2.399  1.228  Normal 0.1 0.9029 
Spring 2015 0.868  0.552  Normal 0.1 0.9029 
Fall 2015 -2.407  -0.166  Normal 0.2 < 2.2e-16 
Spring 2016 4.833  2.185  Not Normal 0.1 0.9029 
Fall 2016 2.000  -1.145  Normal 0.1 0.9029 
Spring 2017 4.028  1.981  Not Normal 0.1 0.9029 

 

Table 4. Course Load of Students 
 Course Taken  

Student Load CSCI 110 CSCI 111 CSCI 112 Total 
Fulltime (12+ hrs ) 71 85% 385 91% 202 92% 658 
Parttime (<12 hrs) 13 15% 40 9% 17 8% 70 

 84  425  219  728 
 

Table 6. Statistical Results For CSCI 111 
      Hartigan’s Dip Test 

Semester Kurtosis  Skewness  Shapiro-Wilk Normality Test D p-value 
Spring 2014 -0.598  -0.183  Normal 0.1200 0.5122 
Fall 2014 1.055  0.513  Normal 0.1000 0.9029 
Spring 2015 2.738  1.628  Normal 0.1200 0.5122 
Fall 2015 2.854  1.498  Normal 0.1000 0.9029 
Spring 2016 -1.137  0.383  Normal 0.1333 0.4077 
Fall 2016 0.738  0.259  Normal 0.1000 0.9029 
Spring 2017 2.283  -1.314  Normal 0.1000 0.9029 
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DISCUSSION 
In the present study, we found no support for the bimodal distribution. Indeed, what is striking is the strength 

of the unimodality in the distributions. The few non-normal distributions have elevated values of kurtosis and were 
positively skewed, suggesting a tight distribution around a unique mean. Non-normality does not imply 
multimodality, and indeed, these distributions do not significantly depart from unimodality on Hartigan’s dip test. 
The elevated values of kurtosis suggest low variance in scores and the prevalence of positive skewness in CSCI 110 
and CSCI 111 suggests more students are meeting or exceeding course expectations in the first two courses. 
Whereas performance in CSCI 112 exhibits a trend toward less kurtosis and skewness, and consequently, more 
normal distributions. 

Rather than supporting the bimodal hypothesis, these data describe a situation where performance in CSCI 110 
and CSCI 111 does not appear sufficiently discriminating between weaker and stronger students, hence the 
prevalence of positive skewness and high-levels of kurtosis in grade distributions. Positive skewness in 
performance is representative of situations where more grades are clustered above the mean than below. This is 
common in criterion-referenced situations where course performance is a function of completing assignments and 
test items are chosen for content-coverage but not for discriminating between different performance levels (Brown, 
2014; Dunn, Perry, & Morgan, 2002; Sadler, 2005). We observe more normality in the later CSCI 112 as this course 
may offer more conceptual difficulty than its two prerequisite courses and may be naturally more discriminating.  

Such results may not be surprising to faculty policymakers as the presence of the non-compulsory introductory 
course CSCI 110 suggests that the course was created to address the gap in prior knowledge and skill possessed by 
the highly varied student population that subscribe to these courses. Students in Mathematics and Science are 
expected to already possess the minimum competence addressed by the first introductory course and are not 
required to take the first course on fundamentals. Indeed, this first non-compulsory course can be seen as implicitly 
addressing the needs of two different groups of students taking introductory computer science courses. While it 
would be erroneous to claim the bimodal distribution based on the implementation of a preliminary course on 
computer science fundamentals, it does admit the recognition of different groups of students entering with different 
needs. We note that comparatively few students (n = 84) take the non-compulsory CSCI 110 while a majority takes 
CSCI 111 (n =425), but only half as many continue to CSCI 112 (n = 219). Thus, CSCI 111 serves as a threshold 
course, nearly half of the students that take CSCI 111 do not continue to CSCI 1112. Students choose computer 
science for myriad reasons, and the course structure reflects that reality. Many students that take an introductory 
course do not go on to major in that discipline. Whereas criterion-referenced examinations are increasingly common 
with the rise in competency-based evaluation frameworks, using norm-referenced assessments in addition to 
criterion-referenced assessments could serve as motivating factor, as the prevalence of competitive coding 
platforms suggests. Indeed, Kattis includes such a gamified aspect to its coding challenges too (Basnet et al., 2018). 
Studying performance helps to improve delivery of introductory computer science courses by ensuring that courses 
are aligned with student needs and address preconceptions and prior knowledge and experience. 

The present analysis supports the view that introductory computer science does provide some challenges as 
students exhibit a range of ability and interests upon entering the introductory computer science course sequence. 
However, the high-levels of kurtosis and skewness suggest that a more tightly coupled and carefully planned 
course sequence may help students progress by guiding them to understanding the more difficult concepts through 
targeted norm-referenced assessment. It is vital that all students have the prerequisite conceptual understanding 
as well as the basic knowledge and skill covered in a first computer science fundamentals course. This may be best 
achieved by instituting a norm-referenced model with software like Kattis (Basnet et al., 2018) to evaluate 
understanding in addition to criterion-based performance measures. 

Table 7. Statistical Results For CSCI 112 
      Hartigan’s Dip Test 

Semester Kurtosis  Skewness  Shapiro-Wilk Normality Test D p-value 
Spring 2014 -1.418  -0.117  Normal 0.1333 0.4077 
Fall 2014 2.399  -1.228  Normal 0.1000 0.9029 
Spring 2015 -0.846  0.364  Normal 0.1667 0.1645 
Fall 2015 -2.763  -0.134  Normal 0.1571 0.2286 
Spring 2016 3.040  1.702  Normal 0.1000 0.9029 
Fall 2016 -0.612  -0.512  Normal 0.2000 < 2.2e-16 
Spring 2017 1.282  0.486  Normal 0.1000 0.9029 
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LIMITATIONS AND FUTURE DIRECTIONS 
Changes occurred over the time of the study which could have confounded the results. MATH 113 was changed 

from a prerequisite to a co-requisite for CSCI 111 for the last several years, which might have allowed more weakly 
prepared students into the class. However, that would be expected to increase the number of students in a lower 
hump, but it did not. Second, an influx of students who had taken an AP Computer Science course occurred during 
the study (as a result of grant money encouraging that offering). That change could have encouraged more low 
grades for CSCI 112, while encouraging higher grades in CSCI 111 and CSCI 110. While those do not appear to have 
happened, they were not tracked for this study. 

Also, prior to the collection of this data began, major efforts were incorporated in the computer science courses 
to increase retention for the major. These changes included using peer tutoring in labs outside of class, including 
one or two lab aides from the more advanced computer science majors to help students on lab days—increasing 
positive interactions and satisfaction for students, and group advising to help students choose the best courses for 
their background and ability. Better placement and more readily available help may have decreased the number of 
students struggling in the classes. It is possible that the more uniform distribution seen here were because such 
retention efforts aided a large number of the students who might have fallen in the lower end, alleviating the 
bimodal effect.  

As a retrospective study using data from a specific sample of students, issues of generalizability are also a 
natural concern. Further research should explore the influence of contextual and situational factors on student 
performance across course sequences. Performance data ought to streamline the introductory computer science 
course sequence to ensure students are being properly assessed and prepared for subsequent study. 
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