

Detection of Virtual Environments and Low Interaction Honeypots

S. Mukkamala, K. Yendrapalli, R. Basnet, M. K. Shankarapani, A. H. Sung
Department of Computer Science

Institute for Complex Additive Systems Analysis
New Mexico Tech

(srinivas|krishna|rbasnet|madhu|sung@cs.nmt.edu)

Abstract – This paper focuses on the detection of

virtual environments and low interaction honeypots

by using a feature set that is built using traditional

system and network level finger printing

mechanisms. Earlier work in the area has been

mostly based on the system level detection. The

results aim at bringing out the limitations in the

current honeypot technology.

This paper also describes the results concerning

the robustness and generalization capabilities of

kernel methods in detecting honeypots using system

and network finger printing data. We use traditional

support vector machines (SVM), biased support

vector machine (BSVM) and leave-one-out model

selection for support vector machines (looms) for

model selection. We also evaluate the impact of

kernel type and parameter values on the accuracy of

a support vector machine (SVM) performing

honeypot classification. Through a variety of

comparative experiments, it is found that SVM

performs the best for data sent on the same

network; BSVM performs the best for data sent

from a remote network.

1. INTRODUCTION

ne of the purposes of a honeypot is to lure the

attacker into interacting with the honeypot and

gather information about emerging threats or

attack vectors so that the organization’s defenses can

be updated. New tools can be discovered, attack

patterns can be determined, and the very motives of

the attackers can be studied [1, 2].

Being able to detect honeypots is important to

malicious users as well as security professionals. The

stealthy-ness of a honeypot is an important factor to

consider in an organization’s overall security strategy

but more importantly honeypot developers have few

tools with which to test their products.

Earlier work on detection of honeypots has

focused on detecting them at system level by

examining simple features such as system calls or

installed software [3]. The work presented in this

paper concentrates on network level detection. The

fact that low interaction honeypots do not implement

a complete feature set (which a real system does) and

also that emulated environments have a significant

software overhead when multiple virtual machines

are running on a single physical machine have been

the key features in carrying out the experiments.

A technique called service exercising was

implemented based on low interaction honeypots

having an incomplete feature set and TCP/IP finger

printing techniques in combination with learning

machines are implemented to detect a benign and

honeypot systems. One of the key features used in

TCP/IP finger printing is timing analysis, technique

that sends a stream of ICMP echo requests to the

target and then measures how quickly the nodes can

reply. The results obtained show how the two groups

(honeypots and real systems) can be clearly

distinguished.

The paper is constructed as follows: the first

section is this introduction; section 2 provides an

insight to network level detection of honeypots.

Section 3 describes methodologies used for detection

and data collection. Models generated by Biased

Support Vector Machine using leave-one-out model

for support vector machines (looms) is given in

section 4. A brief introduction to model selection

using SVMs for detecting honeypots is given in

section 6. In section 6, we analyze classification

accuracies of SVMs using ROC curves. Section 7

presents the results and discussion. Summary and

Conclusions are given in section 8.

II. NETWORK LEVEL DETECTION OF

HONEYPOTS

Previous efforts to detect honeypots have focused on

system level features such as installed software,

detecting kernel modules, detecting virtual

environments, and performing timing analysis of

system functions [3]. While successful, these

techniques require access to the local system. Use of

these techniques in a networked environment requires

a user account or some other way to execute arbitrary

code. A faster, more versatile method of network

based honeypot detection is needed [4].

Network based honeypot features: An ideal

honeypot will mirror a real system exactly and is thus

difficult to detect but unfortunately existing honeypot

technology is far from ideal. In general there are

O

several high level “features” that honeypots possess

but real production systems do not:

� There should be no network activity on the

honeypot

� All interactions with the honeypot are logged

extensively

� Bandwidth is often restricted to prevent a

compromised honeypot from damaging other

networks

� Low interaction honeypots do not implement a

full feature set

� Emulated environments have multiple virtual

machines running on a single physical machine

or have significant software overhead when

compared to real systems

The first feature is hard to detect without long

term monitoring of the honeypot’s local network

traffic. It is worth noting that the only way to detect

a ideal or “pure” honeypot at the network level is to

monitor local traffic and even then there is a danger

for a high false positive rate.

Service exercising: one method to detect a

honeypot is to test or “exercise” the services it

provides. Some environments (especially low

interaction honeypots) do not implement a full

feature set and by selecting uncommon features or

operations we may be able to determine if we are

working with a legitimate system or a part of the

network defenses.

Timing analysis of ICMP ECHO

requests: detection technique builds on a simple

observation: most honeypot software responds slower

to ICMP ECHO (ping) requests compared to non-

emulated systems. This is illustrated in figure 1

below, which shows the response time of several

virtual machines and a real Windows 2000 and

Redhat Linux system. The first three systems are

virtual environments (Microsoft Virtual PC, Honeyd,

and VMWare) emulating a single Microsoft

Windows 2000 system and the last two systems are a

real Microsoft Windows 2000 machine and a RedHat

Linux machine for comparison. While VPC responds

the slowest there is a clear separation between the

real systems and the emulated or virtual systems. By

simply creating a “threshold” at a delay of 4.4�10
-4

seconds we can separate the benign systems from the

honeypots.

While a precise explanation for this separation is

infeasible without intimate knowledge of the inner

workings of the virtual machines we can propose a

reasonable hypothesis. Because Virtual PC and

VMWare both sit on top of a complete guest

operating system (in this case Windows 2000) the

network data must at the very least go through the

link layer before being passed to the virtual system

and it is quite probable that it passes trough the full

TCP/IP stack on the guest system [4].

ICMP ECHO response times

1.E-04

2.E-04

3.E-04
4.E-04

5.E-04

6.E-04

7.E-04
8.E-04

9.E-04

1.E-03

0 1 2 3 4 5 6 7

seconds

d
e
la

y

VPC 2000

Honeyd 2000

VMWare 2000

2000 real

Linux real

Figure 1: ICMP ECHO response times

In effect this doubles the delay from the operating

system. Other delays could be introduced when

multiple virtual machines are present on a single

guest operating system and the guest operating

system must route packets between several processes.

This is one of the few features that distinguish virtual

machines from real systems.

TCP/IP finger printing: active finger printing is

used to collect the data for analysis. For each of the

TCP/IP connection, 49 various quantitative and

qualitative features were extracted. The list of the

features is given in tabel 1.

Table 1. TCP/IP Features Used for Analysis

S.No Feature Extracted

1 sent_packets

2 received_packets

3 total_packets

4 sent_bytes

5 average_sent_bytes

6 received_bytes

7 average_received_bytes

8 total_bytes

9 average_bytes

10 sent_ttl

11 received_ttl
12 average_received_ttl

13 total_ttl

14 average_ttl

15 sent_tcp_header_length

16 average_sent_tcp_header_length

17 received_tcp_header_length

18 average_received_tcp_header_length

19 total_tcp_header_length

20 average_tcp_header_length

21 sent_ack_flags

22 average_sent_ack_flags

23 received_ack_flags

24 total_ack_flags

25 average_ack_flags

26 sent_push_flags

27 average_sent_push_flags

28 received_push_flags

29 average_received_push_flags

30 total_push_flags

31 average_push_flags

32 sent_syn_flags

33 average_sent_syn_flags

34 received_syn_flags

35 average_received_syn_flags

36 total_syn_flags

37 average_syn_flags

38 sent_fin_flags

39 average_sent_fin_flags

40 received_fin_flags

41 average_received_fin_flags

42 total_fin_flags

43 average_fin_flags

44 sent_window_size

45 average_sent_window_size

46 received_window_size

47 average_received_window_size

48 total_window_size

49 average_window_size

III. METHODOLOGY AND DATA COLLECTION

Based on the observations presented in section 2 a

technique was developed to classify a node as a

honeypot or a benign system. Streams of network

requests are sent to the suspect node to collect the

data (49 features described in tabel1) and then the

delay between the request and the response time is

also measured. A monitor attached to a network tap

captures the raw packets passing between the scanner

and the target and extracts the timing information

from the data link layer headers (in most cases the

data link layer will be Ethernet) and the features

described in table 1. The network layout is presented

in Figure 2 below [4].

Figure 2: Base case network layout

This technique has the potential to be very

sensitive to network noise. The further the target gets

from the host the more hops the packets must take,

each one potentially adding delay. To determine if

this technique is still valid in a real world scenario

the honeypot will be tested from two distances from

the scanner:

� Local: on the local Ethernet, no more than two

hops from the target to the scanner

� Wireless: on a wireless router attached to the

local network. Several hops between the target

and the scanner

The honeypot technology scanned ranges from

single virtual machines to three simultaneous virtual

machines on a single physical host. The systems

being evaluated are:

� Microsoft Virtual PC emulating a single

Windows 2000 machine

� Microsoft Virtual PC emulating three Windows

2000 machines

� VMWare emulating a single Windows 2000

machine

� A real (benign) Windows 2000 machine

� A real Redhat Linux machine

A. Live Network Testing

To make data collection more realistic and to avoid

false alarms the honeypots are deployed in a real

production network and are scattered amongst

different physical LANs. The detection scans are

performed both at the local level and through a

wireless router to confuse the situation even more.

Figure 3 below shows the logical layout of the test

case network [4]. Data is collected at multiple time

intervals [1 sec, 2 sec, 5 sec, 10 sec,].

Figure 3: Test case network layout

Four virtual machine honeypots are compared to four

real production systems. The systems being

compared are:

� Microsoft Virtual PC emulating three Windows

2000 machines

� VMWare emulating a single Windows 2000

machine

� A real Windows 2000 machine

� A real Windows 2003 machine

� A real Windows XP machine

� A real Redhat Linux machine

Linux

Monitor

Scanner

XP

2000 VMWare
2003

VPC

Network

Network

Target

Monitor

Scanner

IV. BIASED SUPPORT VECTOR MACHINES

Biased support vector machine (BSVM), a

decomposition method for support vector machines

(SVM) for large classification problems [5,6]. BSVM

uses a decomposition method to solve a bound-

constrained SVM formulation. BSVM Uses a simple

working set selection which leads to faster

convergences for difficult cases and a bounded SVM

formulation and a projected gradient optimization

solver which allow BSVM to quickly and stably

identify support vectors. Leave-one-out model

selection for biased support vector machines (BSVM)

is used for automatic model selection [7].

Figure 4: BSVM model for Local to Local [100000 sec]

Figure 5: BSVM model for Remote to Local [.1 sec]

Models generated for TCP/IP data using leave-

one-out model for support vector machines (looms)

are given in figures 4 to 5. BSVM model generated

for data collected from sending packets to the

honeynet from the same network using a time

interval of .1 sec is given in figure 4. BSVM model

generated for data collected from sending packets to

the honeynet from a remote network using a time

interval of .1 sec is given in figure 5.

V. MODEL SELECTION SVMs

In any predictive learning task, such as classification,

both a model and a parameter estimation method

should be selected in order to achieve a high level of

performance of the learning machine. Recent

approaches allow a wide class of models of varying

complexity to be chosen. Then the task of learning

amounts to selecting the sought-after model of

optimal complexity and estimating parameters from

training data [8,9].

Within the SVMs approach, usually parameters

to be chosen are (i) the penalty term C which

determines the trade-off between the complexity of

the decision function and the number of training

examples misclassified; (ii) the mapping function ;Φ

and (iii) the kernel function such that

)()(),(jijiK xxxx Φ⋅Φ= . In the case of RBF kernel, the

width, which implicitly defines the high dimensional

feature space, is the other parameter to be selected

[10,11].

Figure 6: SVM model for Local to Local [2 sec]

Figure 7: SVM model for Remote to Local [100000 sec]

Figure 8: SVM model for Remote to Remote [1 sec]

We performed a grid search using 10-fold cross

validation for each of the five faults in our data set

[11]. First, we achieved the search of parameters C

and γ in a coarse scale and then we carried through

a fine tuning into the five detection faults proper

space. Model selection results obtained through grid

search are given in figures 6 to 8 for Local to Local,

Remote to Local and Remote to Remote,

respectively.

VI. ROC CURVES

The Receiver Operating Characteristic (ROC) curves

are generated by considering the rate at which true

positives accumulate versus the rate at which false

positives accumulate with each one corresponding,

respectively, to the vertical axis and the horizontal

axis in Figures 9 to 11.

Figure 9: SVM accuracy for Local to Local [2 sec]

Figure 10: SVM accuracy for Remote to Local [5 sec]

Figure 11: SVM accuracy for Remote to Remote [1 sec]

The point (0,1) is the perfect classifier, since it

classifies all positive cases and negative cases

correctly. Thus an ideal system will initiate by

identifying all the positive examples and so the curve

will rise to (0,1) immediately, having a zero rate of

false positives, and then continue along to (1,1).

Detection rates and false alarms are evaluated for

the hooneypot dataset described in section 2 and the

obtained results are used to form the ROC curves.

Figures 9 to 11 show the ROC curves of the detection

models by benign machines and honeypots. In each

of these ROC plots, the x-axis is the false alarm rate,

calculated as the percentage of benign machines

detected as honeypots; the y-axis is the detection rate,

calculated as the percentage of honeypots detected. A

data point in the upper left corner corresponds to

optimal high performance, i.e, high detection rate

with low false alarm rate [12].

VII. RESULTS

The service exercising results are given in table 2

below. A check mark (�) denotes the feature or

command was present and a cross (�) denotes the

feature could not be found. The “real systems”

column is the combined results for both the Windows

2003 server as well as the Red Hat server. The

servers performed identically.

Table 2: Service features tested

Service
Feature /

command
Real

systems
Honeyd

HTTP

GET

OPTINOS

HEAD

TRACE

�
�
�
�

�
�
�
�

FTP

USER

PASS

MODE

RETR

�
�
�
�

�
�
�
�

SMTP

HELO

MAIL

DATA

VRFY

ETRN

�
�
�
�
�

�
�
�
�
�

From these results it is clear that while Honeyd

implements the basic functionality of a service it falls

short when one tries to actually use the service.

 A. Timing analysis

The honeynet (five honeypots and two benign

systems) is scanned from both the local wired

Ethernet network and from a wireless remote access

point. After the base case had been established the

honeypots were distributed around the local campus

network and the two scans were repeated. Figure 12

below shows the cumulative average of the response

times for the wired base case (scanning the entire

subnet from the same Ethernet switch). The

cumulative average was chosen because it shows how

the node’s response times converge. The VMWare

based virtual machine experienced some early delays

but even then we can see that it is beginning to

converge back to a response time close to its initial

value.

Base case wired cumulative average

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

Packets

D
e
la

y
 (
s
e
c
o
n
d
s
) VPC 2000 v1

VPC 2000 v2

VPC 2000 v3

VMWare 2000

Real 2000

Real Linux

Figure 12: Wired cumulative average

There is a clear separation between all of the

virtual machines and the real machines. By setting a

threshold of 3.7�10
-4

 (all nodes that respond slower

than the threshold are honeypots) it is possible to

clearly separate the two groups.

B. Finger Printing

 In our experiments, we perform 2-class classification

using different kernel methods. The (training and

testing) data set contains 11982 randomly generated

points from the data set representing the 2 classes.

The set of 5092 training data and 6890 testing data

are divided in to 2 classes: benign systems and

honeypots. Same training and test datasets were used

for all the experiments. Table 3 summarizes the

overall classification accuracy of SVMs, BSVMs and

Looms for data sent from the local network to the

honeynet. Table 4 summarizes the overall accuracy

of SVMs, BSVMs and Looms for data sent from the

remote network to the honeynet. Table 5 summarizes

the overall accuracy of SVMs, BSVMs and Looms

for data sent from the remote network to the remote

honeynet.

Table 3: Classification accuracies for Local to Local

Data Collection

Time Intervals
SVM BSVM Looms

1 sec 99.79 97.84 98.07

2 sec 99.38 96.93 96.93

5 sec 97.12 94.958 94.96

10 sec 93.55 96.09 88.27

0.1 sec 99.95 99.80 99.78

0.5 sec 98.55 98.51 100.00

Table 4: Classification accuracies for Remote to Local

Data Collection

Time Intervals
SVM BSVM Looms

1 sec 96.40 95.498 96.51

2 sec 92.70 93.27 92.68

5 sec 91.47 88.81 85.60

10 sec 86.50 88.45 77.01

0.1 sec 97.64 97.63 97.73

0.5 sec 97.55 97.44 97.44

Table 5: Classification accuracies for Remote to Remote

Data Collection

Time Intervals
SVM BSVM Looms

1 sec 99.52 99.45 99.64

2 sec 96.36 98.91 97.81

5 sec 91.85 100.00 100.00

10 sec 95.96 100.00 94.44

0.1 sec 97.12 97.90 97.12

0.5 sec 99.71 99.08 99.54

VIII. DISCUSSION & CONCLUSIONS

Detecting honeypots by performing timing analysis is

heavily dependent on network topology as well as the

similarity between the systems being scanned. A

slight change in software (for example changing the

operating system) has a huge effect on the accuracy

of this technique. However, this technique has the

advantages of not requiring local system access as

well as being able to compare many systems

simultaneously. Correctly selecting the threshold to

split the two groups is the largest weakness of this

technique.

These techniques vary greatly in their

aggressiveness but are still fairly stealthy. Service

exercising is arguably the stealthiest technique with

regards to bandwidth consumed or packets sent.

Timing analysis, however, requires a lot of

information to be sent and received in order to get an

accurate result. When compared to local system level

detection these techniques consume very little

bandwidth.

Using finger printing data Kernel methods easily

achieve high detection accuracy (higher than 95%).

SVM performs the best on local network; BSVM

performs the best for data sent from a remote

network.

Model selection results using Leave-one-out

model selection for support vector machines (looms)

based on BSVM are presented in (Figures 4 and 5). A

grid search for honeypot detection using SVM

(Figures 6 to 8) which seeks the optimal values of the

constraint penalty for method solution and the kernel

width (C,γ) has been performed. We demonstrate that

the ability with which SVMs can classify honeypots

is highly dependent upon both the kernel type and the

parameter settings.

ACKNOWLEDGEMENTS

Support for this research received from ICASA

(Institute for Complex Additive Systems Analysis, a

division of New Mexico Tech), a DOD IASP, and an

NSF SFS Capacity Building grants are gratefully

acknowledged. We would also like to acknowledge

many insightful discussions with Patrick Chavez and

Rajeev Veeraghattam that helped clarify our ideas.

REFERENCES

1. Know Your Enemy: Honeynets. The Honeynet
Project's Know Your Enemy Series 2005

2. Curran, K., et al., “Monitoring hacker activity
with a Honeynet,” International Journal of
Network Management, 2005. 15(2): p. 123-134.

3. Holz, T., F. Ravnal, “Detecting Honeypots and
other syspicious enviroments,” Proceedings of
the 2005 IEEE, Workshop on Information
Assurance and Security, 2005.

4. P. Defibaugh-Chavez, R. Veeraghattam, M.

Kannappa, S. Mukkamala, A. H. Sung, “Network

Based Detection of Virtual Environments and Low

Interaction Honeypots,” Proceedings of the 2006

IEEE SMC, Workshop on Information Assurance.

5. C. W. Hsu, C. J. Lin, “A comparison on methods
for multi-class support vector machines,” IEEE
Transactions on Neural Networks, 13, pp. 415-
425, 2002.

6. C. H. Chan, I. King, “Using Biased Support

Vector Machine to Improve Retrieval Result in

Image Retrieval with Self-organizing Map,”

Proceedings of 11th International Conference,

ICONIP. Lecture Notes in Computer Science

3316 Springer, ISBN 3-540-23931-6, pp. 714-

719, 2004.

7. J. H. Lee, C. J. Lin, “Automatic model selection
for support vector machines,” Technical report,
Department of Computer Science and
Information Engineering, National Taiwan
University, 2000.

8. O. Chapelle, V. Vapnik, “Model selection for

support vector machines,” Advances in Neural

Information Processing Systems 12, 1999.

9. V. Cherkassy, “Model complexity control and

statistical learning theory,” Journal of natural

computing 1, pp. 109–133, 2002.

10. N. Cristianini, J. S. Taylor, “Support Vector

Machines and Other Kernel-based Learning

Algorithms,” Technical Report, Cambridge

University Press, 2000.

11. C. C. Chang, C. J. Lin, “LIBSVM: a library for
support vector machines,” Technical Report,
Department of Computer Science and
Information Engineering, National Taiwan
University, 2001.

12. J. P. Egan, “Signal detection theory and ROC

analysis,” New York: Academic Press, 1975.

