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Abstract – This paper focuses on the detection of 

virtual environments and low interaction honeypots 

by using a feature set that is built using traditional 

system and network level finger printing 

mechanisms.  Earlier work in the area has been 

mostly based on the system level detection. The 

results aim at bringing out the limitations in the 

current honeypot technology. 

This paper also describes the results concerning 

the robustness and generalization capabilities of 

kernel methods in detecting honeypots using system 

and network finger printing data. We use traditional 

support vector machines (SVM), biased support 

vector machine (BSVM) and leave-one-out model 

selection for support vector machines (looms) for 

model selection. We also evaluate the impact of 

kernel type and parameter values on the accuracy of 

a support vector machine (SVM) performing 

honeypot classification. Through a variety of 

comparative experiments, it is found that SVM 

performs the best for data sent on the same 

network; BSVM performs the best for data sent 

from a remote network.  
 

1. INTRODUCTION 

ne of the purposes of a honeypot is to lure the 

attacker into interacting with the honeypot and 

gather information about emerging threats or 

attack vectors so that the organization’s defenses can 

be updated.  New tools can be discovered, attack 

patterns can be determined, and the very motives of 

the attackers can be studied [1, 2]. 

Being able to detect honeypots is important to 

malicious users as well as security professionals.  The 

stealthy-ness of a honeypot is an important factor to 

consider in an organization’s overall security strategy 

but more importantly honeypot developers have few 

tools with which to test their products. 

Earlier work on detection of honeypots has 

focused on detecting them at system level by 

examining simple features such as system calls or 

installed software [3]. The work presented in this 

paper concentrates on network level detection.  The 

fact that low interaction honeypots do not implement 

a complete feature set (which a real system does) and 

also that emulated environments have a significant 

software overhead when multiple virtual machines 

are running on a single physical machine have been 

the key features in carrying out the experiments.  

A technique called service exercising was 

implemented based on low interaction honeypots 

having an incomplete feature set and  TCP/IP finger 

printing techniques in combination with learning 

machines are implemented to detect a benign and 

honeypot systems. One of the key features used in 

TCP/IP finger printing is timing analysis, technique 

that sends a stream of ICMP echo requests to the 

target and then measures how quickly the nodes can 

reply.  The results obtained show how the two groups 

(honeypots and real systems) can be clearly 

distinguished.  

The paper is constructed as follows: the first 

section is this introduction; section 2 provides an 

insight to network level detection of honeypots. 

Section 3 describes methodologies used for detection 

and data collection. Models generated by Biased 

Support Vector Machine using leave-one-out model 

for support vector machines (looms) is given in 

section 4. A brief introduction to model selection 

using SVMs for detecting honeypots is given in 

section 6. In section 6, we analyze classification 

accuracies of SVMs using ROC curves. Section 7 

presents the results and discussion. Summary and 

Conclusions are given in section 8. 

II. NETWORK LEVEL DETECTION OF 

HONEYPOTS 

Previous efforts to detect honeypots have focused on 

system level features such as installed software, 

detecting kernel modules, detecting virtual 

environments, and performing timing analysis of 

system functions [3].  While successful, these 

techniques require access to the local system.  Use of 

these techniques in a networked environment requires 

a user account or some other way to execute arbitrary 

code.  A faster, more versatile method of network 

based honeypot detection is needed [4]. 

Network based honeypot features: An ideal 

honeypot will mirror a real system exactly and is thus 

difficult to detect but unfortunately existing honeypot 

technology is far from ideal.  In general there are 
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several high level “features” that honeypots possess 

but real production systems do not: 

� There should be no network activity on the 

honeypot 

� All interactions with the honeypot are logged 

extensively 

� Bandwidth is often restricted to prevent a 

compromised honeypot from damaging other 

networks 

� Low interaction honeypots do not implement a 

full feature set 

� Emulated environments have multiple virtual 

machines running on a single physical machine 

or have significant software overhead when 

compared to real systems 

The first feature is hard to detect without long 

term monitoring of the honeypot’s local network 

traffic.  It is worth noting that the only way to detect 

a ideal or “pure” honeypot at the network level is to 

monitor local traffic and even then there is a danger 

for a high false positive rate.  

Service exercising: one method to detect a 

honeypot is to test or “exercise” the services it 

provides.  Some environments (especially low 

interaction honeypots) do not implement a full 

feature set and by selecting uncommon features or 

operations we may be able to determine if we are 

working with a legitimate system or a part of the 

network defenses. 

Timing analysis of ICMP ECHO 

requests: detection technique builds on a simple 

observation: most honeypot software responds slower 

to ICMP ECHO (ping) requests compared to non-

emulated systems.  This is illustrated in figure 1 

below, which shows the response time of several 

virtual machines and a real Windows 2000 and 

Redhat Linux system. The first three systems are 

virtual environments (Microsoft Virtual PC, Honeyd, 

and VMWare) emulating a single Microsoft 

Windows 2000 system and the last two systems are a 

real Microsoft Windows 2000 machine and a RedHat 

Linux machine for comparison.  While VPC responds 

the slowest there is a clear separation between the 

real systems and the emulated or virtual systems.  By 

simply creating a “threshold” at a delay of 4.4�10
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seconds we can separate the benign systems from the 

honeypots. 

While a precise explanation for this separation is 

infeasible without intimate knowledge of the inner 

workings of the virtual machines we can propose a 

reasonable hypothesis.  Because Virtual PC and 

VMWare both sit on top of a complete guest 

operating system (in this case Windows 2000) the 

network data must at the very least go through the 

link layer before being passed to the virtual system 

and it is quite probable that it passes trough the full 

TCP/IP stack on the guest system [4]. 

ICMP ECHO response times

1.E-04

2.E-04

3.E-04
4.E-04

5.E-04

6.E-04

7.E-04
8.E-04

9.E-04

1.E-03

0 1 2 3 4 5 6 7

seconds

d
e
la

y

VPC 2000

Honeyd 2000

VMWare 2000

2000 real

Linux real

 
Figure 1: ICMP ECHO response times 

In effect this doubles the delay from the operating 

system.  Other delays could be introduced when 

multiple virtual machines are present on a single 

guest operating system and the guest operating 

system must route packets between several processes. 

This is one of the few features that distinguish virtual 

machines from real systems. 

TCP/IP finger printing: active finger printing is 

used to collect the data for analysis. For each of the 

TCP/IP connection, 49 various quantitative and 

qualitative features were extracted. The list of the 

features is given in tabel 1. 

Table 1. TCP/IP Features Used for Analysis 

S.No Feature Extracted 

1 sent_packets 

2 received_packets 

3 total_packets 

4 sent_bytes 

5 average_sent_bytes 

6 received_bytes 

7 average_received_bytes 

8 total_bytes 

9 average_bytes 

10 sent_ttl 

11 received_ttl 
12 average_received_ttl 

13 total_ttl 

14 average_ttl 

15 sent_tcp_header_length 

16 average_sent_tcp_header_length 

17 received_tcp_header_length 

18 average_received_tcp_header_length 

19 total_tcp_header_length 

20 average_tcp_header_length 

21 sent_ack_flags 

22 average_sent_ack_flags 

23 received_ack_flags 

24 total_ack_flags 

25 average_ack_flags 

26 sent_push_flags 

27 average_sent_push_flags 



 

 

28 received_push_flags 

29 average_received_push_flags 

30 total_push_flags 

31 average_push_flags 

32 sent_syn_flags 

33 average_sent_syn_flags 

34 received_syn_flags 

35 average_received_syn_flags 

36 total_syn_flags 

37 average_syn_flags 

38 sent_fin_flags 

39 average_sent_fin_flags 

40 received_fin_flags 

41 average_received_fin_flags 

42 total_fin_flags 

43 average_fin_flags 

44 sent_window_size 

45 average_sent_window_size 

46 received_window_size 

47 average_received_window_size 

48 total_window_size 

49 average_window_size 

III. METHODOLOGY AND DATA COLLECTION 

Based on the observations presented in section 2 a 

technique was developed to classify a node as a 

honeypot or a benign system.  Streams of network 

requests are sent to the suspect node to collect the 

data (49 features described in tabel1) and then the 

delay between the request and the response time is 

also measured.  A monitor attached to a network tap 

captures the raw packets passing between the scanner 

and the target and extracts the timing information 

from the data link layer headers (in most cases the 

data link layer will be Ethernet) and the features 

described in table 1.  The network layout is presented 

in Figure 2 below [4]. 

 
Figure 2: Base case network layout 

This technique has the potential to be very 

sensitive to network noise.  The further the target gets 

from the host the more hops the packets must take, 

each one potentially adding delay.  To determine if 

this technique is still valid in a real world scenario 

the honeypot will be tested from two distances from 

the scanner: 

� Local: on the local Ethernet, no more than two 

hops from the target to the scanner 

� Wireless: on a wireless router attached to the 

local network.  Several hops between the target 

and the scanner 

The honeypot technology scanned ranges from 

single virtual machines to three simultaneous virtual 

machines on a single physical host.  The systems 

being evaluated are: 

� Microsoft Virtual PC emulating a single 

Windows 2000 machine 

� Microsoft Virtual PC emulating three Windows 

2000 machines 

� VMWare emulating a single Windows 2000 

machine 

� A real (benign) Windows 2000 machine 

� A real Redhat Linux machine   

A. Live Network Testing 

To make data collection more realistic and to avoid 

false alarms the honeypots are deployed in a real 

production network and are scattered amongst 

different physical LANs.  The detection scans are 

performed both at the local level and through a 

wireless router to confuse the situation even more.  

Figure 3 below shows the logical layout of the test 

case network [4]. Data is collected at multiple time 

intervals [1 sec, 2 sec, 5 sec, 10 sec, ]. 

 
Figure 3: Test case network layout 

Four virtual machine honeypots are compared to four 

real production systems.  The systems being 

compared are: 

� Microsoft Virtual PC emulating three Windows 

2000 machines 

� VMWare emulating a single Windows 2000 

machine 

� A real Windows 2000 machine 

� A real Windows 2003 machine 

� A real Windows XP machine 

� A real Redhat Linux machine   
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IV. BIASED SUPPORT VECTOR MACHINES 

Biased support vector machine (BSVM), a 

decomposition method for support vector machines 

(SVM) for large classification problems [5,6]. BSVM 

uses a decomposition method to solve a bound-

constrained SVM formulation. BSVM Uses a simple 

working set selection which leads to faster 

convergences for difficult cases and a bounded SVM 

formulation and a projected gradient optimization 

solver which allow BSVM to quickly and stably 

identify support vectors. Leave-one-out model 

selection for biased support vector machines (BSVM) 

is used for automatic model selection [7]. 

 
Figure 4: BSVM model for Local to Local [100000 sec] 

 
Figure 5: BSVM model for Remote to Local [.1 sec] 

Models generated for TCP/IP data using leave-

one-out model for support vector machines (looms) 

are given in figures 4 to 5. BSVM model generated 

for data collected from sending packets to the 

honeynet from the same network using a time 

interval of .1 sec is given in figure 4. BSVM model 

generated for data collected from sending packets to 

the honeynet from a remote network using a time 

interval of .1 sec is given in figure 5.  

V. MODEL SELECTION SVMs 

In any predictive learning task, such as classification, 

both a model and a parameter estimation method 

should be selected in order to achieve a high level of 

performance of the learning machine. Recent 

approaches allow a wide class of models of varying 

complexity to be chosen. Then the task of learning 

amounts to selecting the sought-after model of 

optimal complexity and estimating parameters from 

training data [8,9]. 

Within the SVMs approach, usually parameters 

to be chosen are (i) the penalty term  C  which 

determines the trade-off between the complexity of 

the decision function and the number of training 

examples misclassified; (ii) the mapping function  ;Φ   

and  (iii) the kernel function such that  

)()(),( jijiK xxxx Φ⋅Φ= . In the case of RBF kernel, the 

width, which implicitly defines the high dimensional 

feature space, is the other parameter to be selected 

[10,11]. 

    
Figure 6: SVM model for Local to Local [2 sec] 

 

 
Figure 7: SVM model for Remote to Local [100000 sec] 

 
Figure 8: SVM model for Remote to Remote [1 sec] 

We performed a grid search using 10-fold cross 

validation for each of the five faults in our data set 



 

 

[11]. First, we achieved the search of parameters C 

and γ   in a coarse scale and then we carried through 

a fine tuning into the five detection faults proper 

space. Model selection results obtained through grid 

search are given in figures 6 to 8 for Local to Local, 

Remote to Local and Remote to Remote, 

respectively. 

VI. ROC CURVES 

The Receiver Operating Characteristic (ROC) curves 

are generated by considering the rate at which true 

positives accumulate versus the rate at which false 

positives accumulate with each one corresponding, 

respectively, to the vertical axis and the horizontal 

axis in Figures 9 to 11. 

 
Figure 9: SVM accuracy for Local to Local [2 sec] 

 
Figure 10: SVM accuracy for Remote to Local [5 sec] 

 
Figure 11: SVM accuracy for Remote to Remote [1 sec] 

The point (0,1) is the perfect classifier, since it 

classifies all positive cases and negative cases 

correctly. Thus an ideal system will initiate by 

identifying all the positive examples and so the curve 

will rise to (0,1) immediately, having a zero rate of 

false positives, and then continue along to (1,1).  

Detection rates and false alarms are evaluated for 

the hooneypot dataset described in section 2 and the 

obtained results are used to form the ROC curves. 

Figures 9 to 11 show the ROC curves of the detection 

models by benign machines and honeypots. In each 

of these ROC plots, the x-axis is the false alarm rate, 

calculated as the percentage of benign machines 

detected as honeypots; the y-axis is the detection rate, 

calculated as the percentage of honeypots detected. A 

data point in the upper left corner corresponds to 

optimal high performance, i.e, high detection rate 

with low false alarm rate [12]. 

VII. RESULTS 

The service exercising results are given in table 2 

below.  A check mark (�) denotes the feature or 

command was present and a cross (�) denotes the 

feature could not be found.  The “real systems” 

column is the combined results for both the Windows 

2003 server as well as the Red Hat server.  The 

servers performed identically. 

Table 2: Service features tested 

Service 
Feature / 

command 
Real 

systems 
Honeyd 

HTTP 

GET 

OPTINOS 

HEAD 

TRACE 

� 
� 
� 
� 

� 
� 
� 
� 

FTP 

USER 

PASS 

MODE 

RETR 

� 
� 
� 
� 

� 
� 
� 
� 

SMTP 

HELO 

MAIL 

DATA 

VRFY 

ETRN 

� 
� 
� 
� 
� 

� 
� 
� 
� 
� 

From these results it is clear that while Honeyd 

implements the basic functionality of a service it falls 

short when one tries to actually use the service.  

 A. Timing analysis 

The honeynet (five honeypots and two benign 

systems) is scanned from both the local wired 

Ethernet network and from a wireless remote access 

point.  After the base case had been established the 

honeypots were distributed around the local campus 

network and the two scans were repeated. Figure 12 

below shows the cumulative average of the response 

times for the wired base case (scanning the entire 

subnet from the same Ethernet switch).  The 

cumulative average was chosen because it shows how 

the node’s response times converge.  The VMWare 

based virtual machine experienced some early delays 



 

 

but even then we can see that it is beginning to 

converge back to a response time close to its initial 

value. 

Base case wired cumulative average
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Figure 12: Wired cumulative average 

There is a clear separation between all of the 

virtual machines and the real machines.  By setting a 

threshold of 3.7�10
-4

 (all nodes that respond slower 

than the threshold are honeypots) it is possible to 

clearly separate the two groups. 

B. Finger Printing 

 In our experiments, we perform 2-class classification 

using different kernel methods. The (training and 

testing) data set contains 11982 randomly generated 

points from the data set representing the 2 classes. 

The set of 5092 training data and 6890 testing data 

are divided in to 2 classes: benign systems and 

honeypots. Same training and test datasets were used 

for all the experiments. Table 3 summarizes the 

overall classification accuracy of SVMs, BSVMs and 

Looms for data sent from the local network to the 

honeynet. Table 4 summarizes the overall accuracy 

of SVMs, BSVMs and Looms for data sent from the 

remote network to the honeynet. Table 5 summarizes 

the overall accuracy of SVMs, BSVMs and Looms 

for data sent from the remote network to the remote 

honeynet. 

Table 3: Classification accuracies for Local to Local 

Data Collection 

Time Intervals 
SVM BSVM Looms 

1 sec 99.79 97.84 98.07 

2 sec 99.38 96.93 96.93 

5 sec 97.12 94.958 94.96 

10 sec 93.55 96.09 88.27 

0.1 sec 99.95 99.80 99.78 

0.5 sec 98.55 98.51 100.00 

Table 4: Classification accuracies for Remote to Local 

Data Collection 

Time Intervals 
SVM BSVM Looms 

1 sec 96.40 95.498 96.51 

2 sec 92.70 93.27 92.68 

5 sec 91.47 88.81 85.60 

10 sec 86.50 88.45 77.01 

0.1 sec 97.64 97.63 97.73 

0.5 sec 97.55 97.44 97.44 

Table 5: Classification accuracies for Remote to Remote 

Data Collection 

Time Intervals 
SVM BSVM Looms 

1 sec 99.52 99.45 99.64 

2 sec 96.36 98.91 97.81 

5 sec 91.85 100.00 100.00 

10 sec 95.96 100.00 94.44 

0.1 sec 97.12 97.90 97.12 

0.5 sec 99.71 99.08 99.54 

VIII. DISCUSSION & CONCLUSIONS 

Detecting honeypots by performing timing analysis is 

heavily dependent on network topology as well as the 

similarity between the systems being scanned.  A 

slight change in software (for example changing the 

operating system) has a huge effect on the accuracy 

of this technique.  However, this technique has the 

advantages of not requiring local system access as 

well as being able to compare many systems 

simultaneously.  Correctly selecting the threshold to 

split the two groups is the largest weakness of this 

technique. 

These techniques vary greatly in their 

aggressiveness but are still fairly stealthy.  Service 

exercising is arguably the stealthiest technique with 

regards to bandwidth consumed or packets sent.  

Timing analysis, however, requires a lot of 

information to be sent and received in order to get an 

accurate result.  When compared to local system level 

detection these techniques consume very little 

bandwidth. 

Using finger printing data Kernel methods easily 

achieve high detection accuracy (higher than 95%). 

SVM performs the best on local network; BSVM 

performs the best for data sent from a remote 

network.  

Model selection results using Leave-one-out 

model selection for support vector machines (looms) 

based on BSVM are presented in (Figures 4 and 5). A 

grid search for honeypot detection using SVM 

(Figures 6 to 8) which seeks the optimal values of the 

constraint penalty for method solution and the kernel 

width (C,γ) has been performed. We demonstrate that 

the ability with which SVMs can classify honeypots 

is highly dependent upon both the kernel type and the 

parameter settings. 
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