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Abstract The continued call for twenty-first century skills renders computational

thinking a topical subject of study, as it is increasingly recognized as a fundamental

competency for the contemporary world. Yet its relationship to academic perfor-

mance is poorly understood. In this paper, we explore the association between

computational thinking and academic performance. We test a structural model—

employing a partial least squares approach—to assess the relationship between

computational thinking skills and academic performance. Surprisingly, we find no

association between computational thinking skills and academic performance (ex-

cept for a link between cooperativity and academic performance). These results are

discussed respecting curricular mandated instruction in higher-order thinking skills

and the importance of curricular alignment between instructional objectives and

evaluation approaches for successfully teaching and learning twenty-first-century

skills.
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Introduction

Wing’s (2006) seminal paper introduced and set out a vision for computational

thinking—defined as ‘‘taking an approach to solving problems, designing systems

and understanding human behavior that draws on concepts fundamental to

computing’’ (Wing 2008, p. 1), later elucidated as ‘‘the thought processes involved

in formulating problems and their solutions so that the solutions are represented in a

form that can be effectively carried out by an information-processing agent’’ (Wing

2011, p. 22). This work has motivated a growing stream of research that has both

been supportive and, at times, been quite sanguine about computational thinking

(Barr and Stephenson 2011; Bundy 2007; Cooper et al. 2010; Gretter and Yadav

2016; Grover and Pea 2013; Guzdial 2008; Lu and Fletcher 2009; Lye and Koh

2014; Snalune 2015; Weintrop et al. 2015; Wing 2006, 2008, 2011, 2014).

However, there is general agreement that computational thinking is a fundamental

skill that students need to be equipped with.

Computational thinking can best be understood as an umbrella term that relates a

subset of related cognitive skills that are involved in computational tasks and

activities. Commonly cited examples of computational thinking skills include

abstraction, algorithmic thinking, cooperativity, creativity, critical thinking, data

analysis, debugging, decomposition, heuristic reasoning, problem solving, and

recursive thinking (Barr and Stephenson 2011; Brennan and Resnick 2012;

Korkmaz et al. 2017; Wing 2006). However, what is considered computational

thinking is still being debated and redefined (Barr and Stephenson 2011; Brennan

and Resnick 2012; Gretter and Yadav 2016; Grover and Pea 2013; Korkmaz et al.

2017; Román-González et al. 2017; Sengupta et al. 2013; Voogt et al. 2015;

Weintrop et al. 2015). For analytical convenience, we adopt the skills displaying

acceptable psychometric qualities identified in the computational thinking scale

developed by Korkmaz et al. (2017). Along with Korkmaz et al. (2017), we define

computational thinking as being composed of the following skills: algorithmic

thinking, cooperativity, creativity, critical thinking, and problem solving. As such,

we confine our discussion, and subsequent analysis, of the computational thinking

skills to this latter subset.

While computational thinking is not a new notion (Papert 1996), there has been

renewed attention for the topic in the educational technology research literature

(Lye and Koh 2014). Much of this body of work has been focused on assessing

computational thinking (Brennan, and Resnick 2012), conceptualizing the role of

and development of programming in computational thinking proficiency (Lu and

Fletcher 2009; Lye and Koh 2014), development of students’ computational

thinking skills (Atmatzidou and Demetriadis 2016), tools designed to foster

computational thinking skills (Grover and Pea 2013; Lye and Koh 2014), and

integrating computational thinking into the curriculum (Lee et al. 2014; Sengupta

et al. 2013), among others.
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Despite this increased attention, there is limited empirical research examining the

correlation between computational thinking and academic performance. We have

limited understanding of how various computational thinking skills are related to

and/or influence students’ learning and academic outcomes. Given that there have

been calls to introduce computational thinking in academia (Voogt et al. 2015;

Yadav et al. 2016), there is a clear need for more empirical research to provide more

insight into the potential influence of computational thinking skills on learning

outcomes. As Wing (2008) asks ‘‘how and when should people learn this kind of

thinking and how and when should we teach it?’’ (p. 3720). Such efforts could help

provide an informed perspective on the role and implications of computational

thinking in students’ learning. In addition, a better understanding of how

computational thinking skills relates to learning and academic performance could

contribute to better curricular alignment by helping to identify curricular objectives

that emphasize and promote computational thinking. To that end, the current study

provides empirical evidence to further our understanding of the relationship

between computational thinking and academic performance.

Literature review: computational thinking competencies

To overcome some of the challenges in advancing computational thinking and

integrating computational thinking in academia, Weintrop et al. (2015) suggest that

‘‘it will be necessary to break computational thinking down into a set of well-

defined and measurable skills, concepts, and/or practices’’ (p. 130). If we are to

evaluate the value and efficacy of embedding computational thinking skills in the

curriculum, then valid measures of computational thinking are essential (Román-

González et al. 2017). Below, we detail the following computational thinking skills

identified by Korkmaz et al. (2017): algorithmic thinking, cooperativity, creativity,

critical thinking, and problem solving.

Algorithmic thinking

Computational thinking has been present in the domain of computer science since

the 1950s, where it was often phrased as algorithmic thinking (Denning 2009). As

the field progressed, a distinction evolved between the two terms. Algorithmic

thinking stems from the concept of an algorithm, which refers to solving a problem

by developing a set of steps taken in a sequence to achieve the desired outcome

(Katai 2014). Algorithmic thinking is the thought process towards formulating the

steps that leads to the desired result (Hu 2011; Katai 2014), or as stated by Cooper

et al. (2010) ‘‘algorithmic thinking does not require a computer and mathematical

thinking and is almost solely dependent on the human’s formalization capacity for

abstraction’’ (p. 28). Concretely, algorithmic thinking is a detail-oriented skill

engaging one’s cognitive aptitude for comprehending and analyzing problems,

developing a sequence of steps towards a suitable solution, streamlining the

sequence of steps, and finding substitute steps to ensure that alternate approaches to

the solution are catered for (Futschek 2006). Traditionally, computing has followed
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an algorithmic structure where an input is received and it is processed sequentially

to provide an output; thus, algorithmic thinking is one of the key skills in

computational thinking. Indeed, Yadav, Stephenson, and Hong (2017) asserted that

‘‘algorithms are central to both computer science and computational thinking.

Algorithms underlie the most basic tasks everyone engages in, from following a

simple cooking recipe to providing complicated driving directions’’ (p. 57). Kiss

and Akri (2017) found that not having a background in algorithmic thinking

handicapped students in higher education and argued that traditional teaching

strategies were inappropriate for fostering the conceptual framing required for

coding and problem solving. Thus, they highlighted the need for a strategic focus on

algorithmic and computational thinking in primary and secondary instruction.

Cooperativity

Social cooperation presents itself as a key approach in computational thinking

(Farris and Sengupta 2014; Standl 2016). As the complexity of a problem increases,

being able to work collaboratively becomes necessary; students engage higher

levels of reasoning as part of computational thinking (National Research Council

2011). According to the National Council for Curriculum and Assessment (NCCA),

cooperative problem solving and teamwork are essential for engaging in and

learning from program coding specifications (NCCA 2013). Collaborative problem

solving as proposed by Warneken, Steinwender, Hamann, and Tomasello (2014)

‘‘involves simultaneous coordination of several different behavioural and social-

cognitive skills’’ (p. 49). By working collaboratively, we broaden our thoughts and

engage with the thought processes of one or more partner. Standl (2016) addressed

collaboration by engaging learners in developing graphics using coding in an

environment called ‘Python Turtle.’ The results showed that collaborative problem

solving was an effective instructional means that was exhibited in the interactions

and communication between the students. Similarly, Farris and Sengupta (2014)

studied the development of computational thinking in collaborating students using

agent-based modeling. They found that collaboration and having an agent

perspective helped in understanding the associated scientific concepts. Looking

forward, social cooperation is likely to take on increased importance in compu-

tational thinking since new computational problems are increasingly oriented

toward large-scale networking and complex data-intensive applications, where

solutions result from cooperation and shared problem solving.

Creativity

Creative thinking is a significant aspect of critical thinking and is another dimension

of computational thinking (DeSchryver and Yadav 2015). Applying computational

thinking principles in problem solving, there is a certain level of creative thinking

involved in formulating solutions (Snalune 2015; Voskoglou and Buckley 2012).

According to Mishra, Yadav, and the Deep-Play Research Group (2013), computing

can be a creative endeavor since it engages cognition and thus unravel creativity,

allowing the user to deploy the technology towards creating novel artifacts. Creative
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thinking is distinguished from creativity; Sawyer (2012) defines creativity as ‘‘a new

mental combination that is expressed in the world’’ (p. 7), while creative thinking is

defined by DeSchryver and Yadav (2015) as ‘‘cognitive activity comprising various

subsets of these component thinking skills that are mediated by the more aesthetic

components of traditional creativity’’ (pp. 413–414). Creative thinking was the idea

behind the seminal work of the Lifelong Kindergarten Group (LLK) at the MIT

Media Lab that originated the Scratch programming environment. The philosophy

behind Scratch, according to Resnick et al. (2009) was to ‘‘develop an approach to

programming that would appeal to people who hadn’t previously imagined

themselves as programmers…make it easy for everyone, of all ages, backgrounds,

and interests, to program their own interactive stories, games, animations, and

simulations, and share their creations with one another’’ (p. 60).

Critical thinking

Ater-Kranov, Bryant, Orr, Wallace, and Zhang (2010) highlighted that in addition to

problem solving, critical thinking is the other computational skill that is recurrently

found in the literature. To engage in problem solving, we need to think at a deeper

level and evaluate the problem using or adapting existing knowledge and skill,

laying the groundwork for critical thinking. The deeper level of thinking adds a

layer of complexity, making critical thinking multidimensional and incorporating

skills like evaluation, selection, prediction, abstraction, fostering justified selections,

deductions, and generalizations (Kules 2016; Liu and Wang 2010; Williams 2005).

The complexity inherent in critical thinking also makes it difficult to get a common

definition of the term. Synthesizing from multiple definitions, Voskoglou and

Buckley (2012) define critical thinking as ‘‘the ability or skill by which the

individual transcends his/her subjective self in a wilful manner to arrive rationally at

conclusions (not necessarily favourable to him/her) that can be substantiated using

valid information’’ (p. 31). Depending on the complexity of the problem, different

levels of thinking, either higher-order or lower-order thinking, are activated. Higher-

order thinking is not necessarily algorithmic and produces several solutions since it

engages a more cognitively demanding thinking process, while lower-order thinking

follows a more straightforward sequential algorithmic style engaging minimal

cognitive load, directly arriving to the solution (Mueller et al. 2017; Voskoglou and

Buckley 2012). Critical thinking can generate new knowledge since it engages a

deeper complex thinking, often resulting in creative solutions, thereby also

positioning itself as a precursor to problem solving (Voskoglou and Buckley

2012). Eight thinking attributes have been proposed by the Foundation for Critical

Thinking. These attributes conceive of critical thinking in terms of point of view,

purpose, question at issue, information, interpretation and inference, concepts,

assumptions, and implications and consequences (Foundation for Critical Thinking

2015). These attributes present a synoptic view of critical thinking as a cognitive

process: when there is a trigger towards a goal, we begin to question and formulate

our understanding based on pre-existing knowledge, and we formulate interpreta-

tions and inferences merging our understanding with established concepts, leading

to assumptions which entail the implications and consequences that arise from it,
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readjusting our point of view (Hu 2011). Critical thinking plays a role in the

acquisition of new knowledge as it is only through applying critical thinking to

creative thinking and engaging interpretations, concepts, and inferences that new

knowledge is created and internalized. Critical thinking promotes skills like creative

thinking and problem solving (Voskoglou and Buckley 2012).

Problem solving

Denning (2009) highlights another key aspect of computational thinking as problem

solving where an algorithmic solution is pursued for the problem that is structured

as information or data (Hu 2011). Google for Education also describes computa-

tional thinking as a problem-solving process (Google for Education, n.d.). Polya

(1981) initiated research on problem solving and he defined it as ‘‘finding a way out

of a difficulty, a way around an obstacle, attaining an aim that was not immediately

understandable’’ (p. ix). When we try to find our way out of a problem, we engage

ourselves cognitively in the process of finding a solution. Research in the field

confirms that problem solving can be considered as the successful outcome of the

cognitive engagement process and subconscious thinking towards an obstacle

(Voskoglou and Buckley 2012). Peter Henderson (National Research Council 2011)

explained CT ‘‘as generalized problem solving with constraints’’ (p. 95) and aptly

articulated the relationship of problem solving with computational thinking,

elaborating that to achieve a solution, problem solving predominantly engages

some form of computation. Barr and Stephenson (2011) further highlighted the need

for technology education, suggesting that computational thinking at its core is

problem solving that can be executed on a computing device. As most of the

research presented here points to the algorithmic nature of problem solving, it

appears imperative that students be given the opportunity to apply computational

thinking skills to design and implement efficient algorithms in problem solving

(Yadav et al. 2017).

Research aims

For the present study, we ask the following question: Is there a relationship between

computational thinking skills and academic performance? The overarching goal of

this paper is to examine the relationship between computational thinking and

academic performance, and specify the extent to which the various components of

computational thinking are related to academic performance. To that end, we use a

partial least squares (PLS) approach to empirically evaluate the structural relations

between computational thinking skills and academic performance. We test a

structural model that relates computational thinking skills with academic perfor-

mance, controlling for age, gender, and prior academic achievement. The research

model is presented in Fig. 1.
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Method

Participants, procedure, and measures

Data were collected from pre-university science students completing the DEC

(diplôme d’études collégiales) at an English Collège d’enseignement général et

professionnel (CEGEP; see, for a description, Bazelais et al. 2016) located in

northeastern Canada. Usable data from 104 students were part of the final analyses.

The convenience sample for the current study was composed of 54 females and 50

males. Participants’ mean age was 17.9 years (SD = 0.74).

Respondents participated voluntarily and completed a questionnaire composed of

two sections. ‘‘Introduction’’ section included demographic and academic informa-

tion (GPA), and ‘‘Literature review: computational thinking competencies’’ section

contained items related to computational thinking dimensions that were measured

using the computational thinking scale (Korkmaz et al. 2017). The computational

thinking scale comprises 29 items and is divided into five dimensions: algorithmic

thinking, cooperativity, creativity, critical thinking, and problem solving. Items

were scored on a 5-point Likert scale ranging from 1 = Never to 5 = Always.

Academic performance was measured using students’ self-reported grade point

average (CEGEP R-Score). Demographic and prior achievement (age, gender, high

school GPA) were employed as control variables in the model; the importance of

these control variables have been well documented in the education literature.

Fig. 1 Research model
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Analysis and results

A partial least squares (PLS; Wold 1982) approach was employed because of the

exploratory nature of the present study. All data analyses were conducted using the

WarpPLS software (Kock 2015a). The recommended two-stage data analysis

(measurement model and structural model) approach was followed (Hair et al. 2011;

Kock 2015b). In the subsections below, we report the results for both the

measurement and structural models. The measurement model offers statistics to

establish the reliability and validity of the data and model. The structural model

determines the strength and significance of the model relationships.

Measurement model

The model fit was assessed using various indexes; the model fit statistics (Table 1)

accorded with the suggested criteria (Kock 2015b) demonstrating a good fit between

the model and data. The assessment of the measurement model involved the

evaluation of the adequacy of reliability and validity of the constructs in the model,

which were tested via individual indicators such as reliability, internal consistency,

convergent validity, and discriminant validity.

The indicator loadings—values in the range 0.5–0.7 generally deemed adequate

(Hair et al. 2011; Kock 2015b)—were inspected, and items with loadings less than

the 0.6 threshold were dropped (Table 2). The internal consistency reliability was

assessed using the composite reliabilities (preferred to Cronbach’s alpha).

Composite reliabilities, which ranged from 0.832 to 0.910, were above the 0.7

threshold (Hair et al. 2011). All Cronbach’s alpha values, which ranged from 0.671

to 0.867, were near or above the 0.7 threshold (Hair et al. 2011). Convergent

validity was assessed using the average variance extracted (AVE). AVEs, which

ranged from 0.570 to 0.752, were greater than the 0.5 threshold (Hair et al. 2011).

The relevant statistics for composite reliability, Cronbach’s alpha, and AVEs are

presented in Table 3.

The constructs are abbreviated to ease readability: algorithmic thinking (ALG),

cooperativity (COO), creativity (CRE), critical thinking (CRI), and problem solving

(PRO).

Discriminant validity, which demonstrates the degree to which a construct is

different from other constructs, was assessed using the Fornell–Larcker criterion

Table 1 Model fit statistics

Measure Values Recommended criterion

Average path coefficient (APC) 0.154, P = 0.026 Acceptable if P\ 0.05

Average R-squared (ARS) 0.470, P\ 0.001 Acceptable if P\ 0.05

Average adjusted R-squared (AARS) 0.425, P\ 0.001 Acceptable if P\ 0.05

Average block VIF (AVIF) 1.270 Acceptable if B5

Average full collinearity VIF (AFVIF) 1.621 Acceptable if B5
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(Fornell and Larcker 1981; Kock 2015b). From Table 4, it can be observed that the

Fornell–Larcker criterion is met as all the diagonal values (representing the square

roots of AVEs) are greater than the off-diagonal numbers (representing the

correlations between the variables) in the corresponding rows and columns.

Table 2 Loadings and cross-

loadings of measurement items

Bold values are indicator

loadings

ALG COO CRE CRI PRO P value

ALG2 0.847 -0.147 -0.208 -0.040 0.201 \0.001

ALG3 0.770 -0.057 -0.012 -0.207 0.179 \0.001

ALG4 0.777 0.021 0.042 0.086 -0.208 \0.001

ALG5 0.771 0.121 0.075 -0.054 -0.016 \0.001

ALG6 0.704 0.084 0.134 0.238 -0.191 \0.001

COO1 -0.069 0.829 -0.122 0.215 -0.080 \0.001

COO2 -0.107 0.862 0.099 -0.081 0.006 \0.001

COO3 0.011 0.893 -0.110 0.121 -0.015 \0.001

COO4 0.175 0.799 0.142 -0.271 0.093 \0.001

CRE4 0.053 -0.046 0.849 0.139 -0.067 \0.001

CRE5 0.118 0.092 0.613 -0.177 0.140 \0.001

CRE8 -0.132 -0.019 0.889 -0.011 -0.032 \0.001

CRI1 -0.050 0.138 -0.077 0.718 0.092 \0.001

CRI2 0.125 -0.049 -0.056 0.794 0.091 \0.001

CRI3 -0.211 0.025 -0.115 0.820 0.044 \0.001

CRI4 0.016 -0.075 0.299 0.702 -0.108 \0.001

CRI5 0.134 -0.039 -0.022 0.734 -0.134 \0.001

PRO2 -0.073 0.081 0.128 0.008 0.867 \0.001

PRO3 0.073 -0.081 -0.128 -0.008 0.867 \0.001

Table 3 Measurement scale characteristics

Construct Composite reliability (CR) Cronbach’s alpha Average variance

extracted (AVE)

ALG 0.882 0.833 0.601

COO 0.910 0.867 0.717

CRE 0.832 0.693 0.629

CRI 0.868 0.810 0.570

PRO 0.859 0.671 0.752

Table 4 Discriminant validity

check

Bold values represent the square

roots of AVEs

ALG COO CRE CRI PRO

ALG 0.775 0.179 0.541 0.639 -0.393

COO 0.179 0.847 0.046 0.120 0.151

CRE 0.541 0.046 0.793 0.599 -0.204

CRI 0.639 0.120 0.599 0.755 -0.314

PRO -0.393 0.151 -0.204 -0.314 0.867
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Thus, the acceptability of the psychometric properties of the measurement model

was established.

Structural model

Having established the adequacy of the measurement model, the structural model

was evaluated to test the relationship between the constructs. Multicollinearity was

not an issue since the variance inflation factors (VIFs) between the constructs were

below the suggested threshold of 5 (Kock 2015b). Predictive validity (Q2) was used

to assess the predictive relevance associated with each endogenous variable in the

model; all Q2 coefficient values were greater than zero demonstrating an

acceptable level of predictive relevance (Kock 2015b).

The structural model was examined to test the hypotheses by examining the path

coefficients (b) and path significance (P value). The structural model illustrates the

path coefficients calculated for each link in the model, as well as their corresponding

P values. Examining the path coefficients, Cooperativity was significantly

negatively related to GPA (b = -0.189; P\ 0.05). No further support was found

for associations between the remaining constructs and academic performance:

algorithmic thinking and academic performance (b = 0.124, P[ 0.05), creativity

and academic performance (b = 0.129, P[ 0.05), critical thinking and academic

performance (b = -0.002, P[ 0.05), problem solving and academic performance

(b = -0.123, P[ 0.05).

Thus, we find that cooperativity was significantly and negatively associated with

academic performance, controlling for age, gender, and prior academic achieve-

ment. We find no support for association for algorithmic thinking, critical thinking,

problem solving, creativity, and academic performance.

Discussion

Our findings suggest a lack of association between computational thinking skills and

academic performance (except for a link between cooperativity and academic

performance). This is noteworthy given the importance that has been placed on

teaching and learning twenty-first-century skills in various curricular reforms

implemented since the turn of the millennium. If there is no relationship between

computational thinking skills and academic performance, we must ask whether these

curriculum-mandated skills are being explicitly taught at all. More distressingly, we

must wonder at measures of academic performance that are negatively associated with

cooperativity. This issue is directly related to the problem of curricular alignment

(Anderson 2002; Biggs 1996, 1999) or curriculum coherence (Bateman et al. 2008).

Briefly, our choices of instructional approaches and evaluation means can have

important impacts on the enactment of curricular imperatives.

At the CEGEP level, classroom researchers (Bateman et al. 2008) have explored

the effects of curricular alignment in professional development activities on student

success. According to Bateman et al. (2008), ‘‘A valid curriculum is coherent.

Curriculum coherence is the degree to which the intended learning outcomes
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(instructional objectives), instructional processes (teaching and learning activities)

and assessments (formative and summative evaluations of student learning) are

aligned or connected’’ (p. 22). This professional development effort represented one

of the first attempts at a CEGEP-wide curriculum alignment effort.

Instructional objectives may not be attained if they are not properly evaluated

(Biggs 1999). In their multi-year action research project, the researchers found that

that there was very often a disconnect between espoused course objectives and

evaluation tasks, namely that evaluations were not adequately addressing the

achievement of the specified learning outcomes. The main outcome of the project

was the establishment of a curriculum review process, by which teachers became

accountable to their students and to each other. The curriculum review process is ‘‘a

process that can be used to achieve alignment, equity, fairness, and an increase in

learning for…students with a corresponding increase in job satisfaction for…teach-

ers’’ (Bateman et al. 2008, p. 22).

Curriculum alignment may be difficult to achieve in practice as many competing

institutional, political, and social factors intercede on instructional decisions.

Moreover, persistent institutional realities have led to situations where teachers

often operate in isolation. As Bateman et al. (2008) pointed out, instituting the

curriculum review process required a change or paradigm shift in departmental

operations. Indeed, the curriculum review process itself became a vehicle for

transformational change (Mezirow 2000) and for the development of a community

of practice (Wenger 1998) among the CEGEP teachers.

As the calls for twenty-first-century skills go unabated, it appears necessary for

educational stakeholders to ensure that there is an alignment between espoused

learning outcomes, instructional approaches, and evaluation means. If students are

going to develop the computational thinking skills required to succeed today, these

skills must be explicitly addressed in a coherently organized and delivered curriculum.

The study has some limitations that must be considered. These limitations also

give rise to a host of interesting questions. Demographic limitations include the fact

that the convenience sample for the study was drawn from a single pre-university

college; thus, generalizability of our findings is a natural concern. Accordingly,

similar investigations ought to be expanded to other contexts (such as school levels

and student majors) to observe the variability, if any, of the examined associations.

We only considered age, gender, and high school GPA as control variables; future

studies may consider the incorporation of other salient control variables. Moreover,

as a cross-sectional study, the present findings do not permit causal inferences.

Some experimental research has been conducted that has explored some causal

connections between teaching CT skills and academic performance (Lockwood and

Mooney 2017), but this area of research remains in its infancy. More research is

needed to document the nature of the relationship between CT skills and academic

performance. Future research ought to examine the temporal development of

computational thinking to understand if these constructs are static or develop over

time. In this study, we did not control for the effects of students’ programming

experience, and thus findings could have been potentially affected. Further evidence

of validity and reliability of the recently proposed computational thinking scale

(Korkmaz et al. 2017) would strengthen our findings. We restricted our
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investigation of computational thinking to the skills identified in the computational

thinking scale. This constrained scope leaves open the possibility that other salient

computational thinking skills were omitted from the present study. An important

avenue for future work will be to examine if interventions geared toward developing

the identified computational thinking skills oriented any effects on students’

learning outcomes.

Conclusion

The present study sought to empirically investigate the relationship between

computational thinking skills and academic performance. We found that cooper-

ativity was negatively associated with academic performance, controlling for age,

gender, and prior academic achievement. In contrast, we did not find any significant

association between the other computational thinking skills and academic perfor-

mance. Our findings contribute to the computational thinking literature by

documenting the relationship between computational thinking dimensions and

academic performance. The lack of association between computational thinking and

academic performance suggests that better curricular alignment may be necessary if

students are to develop computational thinking and other twenty-first-century skills.
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